Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Python Workshop Second Edition

You're reading from   The Python Workshop Second Edition Write Python code to solve challenging real-world problems

Arrow left icon
Product type Paperback
Published in Nov 2022
Publisher Packt
ISBN-13 9781804610619
Length 600 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (5):
Arrow left icon
Mario Corchero Jiménez Mario Corchero Jiménez
Author Profile Icon Mario Corchero Jiménez
Mario Corchero Jiménez
Andrew Bird Andrew Bird
Author Profile Icon Andrew Bird
Andrew Bird
Corey Wade Corey Wade
Author Profile Icon Corey Wade
Corey Wade
Graham Lee Graham Lee
Author Profile Icon Graham Lee
Graham Lee
Dr. Lau Cher Han Dr. Lau Cher Han
Author Profile Icon Dr. Lau Cher Han
Dr. Lau Cher Han
+1 more Show less
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Chapter 1: Python Fundamentals – Math, Strings, Conditionals, and Loops 2. Chapter 2: Python Data Structures FREE CHAPTER 3. Chapter 3: Executing Python – Programs, Algorithms, and Functions 4. Chapter 4: Extending Python, Files, Errors, and Graphs 5. Chapter 5: Constructing Python – Classes and Methods 6. Chapter 6: The Standard Library 7. Chapter 7: Becoming Pythonic 8. Chapter 8: Software Development 9. Chapter 9: Practical Python – Advanced Topics 10. Chapter 10: Data Analytics with pandas and NumPy 11. Chapter 11: Machine Learning 12. Chapter 12: Deep Learning with Python 13. Chapter 13: The Evolution of Python – Discovering New Python Features 14. Index 15. Other Books You May Enjoy

Summary

In this chapter, you have learned how to build a variety of ML models to solve regression and classification problems. You have implemented linear regression, Ridge, Lasso, logistic regression, decision trees, random forests, Naive Bayes, AdaBoost, and XGBoost. You have learned about the importance of using cross-validation to split up your training set and test set. You have learned about the dangers of overfitting and how to correct it with regularization. You have learned how to fine-tune hyperparameters using GridSearchCV and RandomizedSearchCV. You have learned how to interpret imbalanced datasets with a confusion matrix and a classification report. You have also learned how to distinguish between bagging and boosting, and precision and recall.

The value of learning these skills is that you can make meaningful and accurate predictions from big data using some of the best ML models in the world today.

In the next chapter, you will improve your ML skills by learning...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime