The multilayer perceptron
The perceptron is a basic processing element that performs a binary classification by mapping a scalar or vector to a binary (or XOR) value {true, false} or {-1, +1}. The original perceptron algorithm was defined as a single layer of neurons for which each value xi of the feature vector is processed in parallel and generates a single output y. The perceptron was later extended to encompass the concept of an activation function.
The single layer perceptrons are limited to process a single linear combination of weights and input values. Scientists found out that adding intermediate layers between the input and output layers enable them to solve more complex classification problems. These intermediate layers are known as hidden layers because they interface only with other perceptrons. Hidden nodes can be accessed only through the input layer.
From now on, we will use a three-layered perceptron to investigate and illustrate the properties of neural networks, as shown...