Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Scala for Data Science

You're reading from   Scala for Data Science Leverage the power of Scala with different tools to build scalable, robust data science applications

Arrow left icon
Product type Paperback
Published in Jan 2016
Publisher
ISBN-13 9781785281372
Length 416 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Pascal Bugnion Pascal Bugnion
Author Profile Icon Pascal Bugnion
Pascal Bugnion
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Scala and Data Science FREE CHAPTER 2. Manipulating Data with Breeze 3. Plotting with breeze-viz 4. Parallel Collections and Futures 5. Scala and SQL through JDBC 6. Slick – A Functional Interface for SQL 7. Web APIs 8. Scala and MongoDB 9. Concurrency with Akka 10. Distributed Batch Processing with Spark 11. Spark SQL and DataFrames 12. Distributed Machine Learning with MLlib 13. Web APIs with Play 14. Visualization with D3 and the Play Framework A. Pattern Matching and Extractors Index

Data shuffling and partitions


To understand data shuffling in Spark, we first need to understand how data is partitioned in RDDs. When we create an RDD by, for instance, loading a file from HDFS, or reading a file in local storage, Spark has no control over what bits of data are distributed in which partitions. This becomes a problem for key-value RDDs: these often require knowing where occurrences of a particular key are, for instance to perform a join. If the key can occur anywhere in the RDD, we have to look through every partition to find the key.

To prevent this, Spark allows the definition of a partitioner on key-value RDDs. A partitioner is an attribute of the RDD that determines which partition a particular key lands in. When an RDD has a partitioner set, the location of a key is entirely determined by the partitioner, and not by the RDD's history, or the number of keys. Two different RDDs with the same partitioner will map the same key to the same partition.

Partitions impact performance...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image