Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python Natural Language Processing

You're reading from   Python Natural Language Processing Advanced machine learning and deep learning techniques for natural language processing

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781787121423
Length 486 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Jalaj Thanaki Jalaj Thanaki
Author Profile Icon Jalaj Thanaki
Jalaj Thanaki
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Introduction FREE CHAPTER 2. Practical Understanding of a Corpus and Dataset 3. Understanding the Structure of a Sentences 4. Preprocessing 5. Feature Engineering and NLP Algorithms 6. Advanced Feature Engineering and NLP Algorithms 7. Rule-Based System for NLP 8. Machine Learning for NLP Problems 9. Deep Learning for NLU and NLG Problems 10. Advanced Tools 11. How to Improve Your NLP Skills 12. Installation Guide

Discussing recent trends for the rule-based system

This section is a discussion about how the current market is using the RB system. So many people are asking many questions on different forums and they want to know about the future of the RB system, so I want to discuss with you one important question which will help you to learn the future trends of the NLP market and RB system. I have some of the questions that we will look at.

Are RB systems outdated in the NLP domain? I would like to answer this with NO. The RB system has been used majorly in all NLP applications, grammar correction, speech recognition, machine translation, and so on! This approach is the first step when you start making any new NLP application. If you want to experiment on your idea, then prototypes can be easily developed with the help of the RB approach. For prototyping, you need domain knowledge and basic...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image