Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Geospatial Development

You're reading from   Python Geospatial Development Develop sophisticated mapping applications from scratch using Python 3 tools for geospatial development

Arrow left icon
Product type Paperback
Published in May 2016
Publisher
ISBN-13 9781785288937
Length 446 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Erik Westra Erik Westra
Author Profile Icon Erik Westra
Erik Westra
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Geospatial Development Using Python FREE CHAPTER 2. GIS 3. Python Libraries for Geospatial Development 4. Sources of Geospatial Data 5. Working with Geospatial Data in Python 6. Spatial Databases 7. Using Python and Mapnik to Generate Maps 8. Working with Spatial Data 9. Improving the DISTAL Application 10. Tools for Web-based Geospatial Development 11. Putting It All Together – a Complete Mapping System 12. ShapeEditor – Importing and Exporting Shapefiles 13. ShapeEditor – Selecting and Editing Features Index

Dealing with projections

One of the challenges of working with geospatial data is that geodetic locations (points on the Earth's surface) are often mapped onto a two-dimensional Cartesian plane using a cartographic projection. We looked at projections in the previous chapter: whenever you have some geospatial data, you need to know which projection that data uses. You also need to know the datum (model of the Earth's shape) assumed by the data.

A common challenge when dealing with geospatial data is that you have to convert data from one projection or datum to another. Fortunately, there is a Python library that makes this task easy: pyproj.

pyproj

pyproj is a Python "wrapper" around another library called PROJ.4. PROJ.4 is an abbreviation for version 4 of the PROJ library. PROJ was originally written by the US Geological Survey for dealing with map projections and has been widely used in geospatial software for many years. The pyproj library makes it possible to access...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime