Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Data Analysis

You're reading from   Python Data Analysis Perform data collection, data processing, wrangling, visualization, and model building using Python

Arrow left icon
Product type Paperback
Published in Feb 2021
Publisher Packt
ISBN-13 9781789955248
Length 478 pages
Edition 3rd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Avinash Navlani Avinash Navlani
Author Profile Icon Avinash Navlani
Avinash Navlani
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Section 1: Foundation for Data Analysis
2. Getting Started with Python Libraries FREE CHAPTER 3. NumPy and pandas 4. Statistics 5. Linear Algebra 6. Section 2: Exploratory Data Analysis and Data Cleaning
7. Data Visualization 8. Retrieving, Processing, and Storing Data 9. Cleaning Messy Data 10. Signal Processing and Time Series 11. Section 3: Deep Dive into Machine Learning
12. Supervised Learning - Regression Analysis 13. Supervised Learning - Classification Techniques 14. Unsupervised Learning - PCA and Clustering 15. Section 4: NLP, Image Analytics, and Parallel Computing
16. Analyzing Textual Data 17. Analyzing Image Data 18. Parallel Computing Using Dask 19. Other Books You May Enjoy

To get the most out of this book

The execution of the code examples provided in this book requires the installation of Python 3.5 or newer on Mac OS X, Linux, or Microsoft Windows. In this book, we will frequently use SciPy, NumPy, Pandas, scikit-learn, statsmodels, matplotlib, and seaborn. Chapter 1, Getting Started with Python Libraries, provides instructions for the installation and advanced tips so that you can work smoothly. Also, the process of installing specific and additional libraries is explained in the respective chapters. Installation of Bokeh is explained in Chapter 5, Data Visualization. Similarly, the installation of NLTK and SpaCy is explained in Chapter 12, Analyzing Textual Data.

We can also install any library or package that you want to explore using the pip command. We need to run the following command with admin privileges:

$ pip install <library name>

We can also install it from our Jupyter Notebook with ! (exclamation mark) before the pip command:

!pip install <library name>

To uninstall a Python library or package installed with pip, use the following command:

$ pip uninstall <library name>

If you are using the digital version of this book, we advise you to type the code yourself or access the code via the GitHub repository (link available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files

You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition. In case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://static.packt-cdn.com/downloads/9781789955248_ColorImages.pdf.

Conventions used

In this book, you will find a number of text styles and conventions used throughout this book. Here, we have shown some examples of these styles. Code words in the text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The other convention the pandas project insists on is the import pandas as pd import statement."

A block of code is set as follows:

# Creating an array
import numpy as np

a = np.array([2,4,6,8,10])

print(a)

Any command-line input or output is written as follows:

$ mkdir 
$ cd css

Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "Select System info from the Administration panel."

Warnings or important notes appear like this.
Tips and tricks appear like this.
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image