Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Data Analysis, Second Edition

You're reading from   Python Data Analysis, Second Edition Data manipulation and complex data analysis with Python

Arrow left icon
Product type Paperback
Published in Mar 2017
Publisher Packt
ISBN-13 9781787127487
Length 330 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Getting Started with Python Libraries 2. NumPy Arrays FREE CHAPTER 3. The Pandas Primer 4. Statistics and Linear Algebra 5. Retrieving, Processing, and Storing Data 6. Data Visualization 7. Signal Processing and Time Series 8. Working with Databases 9. Analyzing Textual Data and Social Media 10. Predictive Analytics and Machine Learning 11. Environments Outside the Python Ecosystem and Cloud Computing 12. Performance Tuning, Profiling, and Concurrency A. Key Concepts
B. Useful Functions C. Online Resources

Finding eigenvalues and eigenvectors with NumPy


The eigenvalues are scalar solutions to the equation Ax = ax, where A is a two-dimensional matrix and x is a one-dimensional vector. The eigenvectors are vectors corresponding to eigenvalues.

Note

The eigenvalues and eigenvectors are fundamental in mathematics, and are used in many important algorithms, such as principal component analysis (PCA). PCA can be used to simplify the analysis of large datasets.

The eigvals() subroutine in the numpy.linalg package computes eigenvalues. The eig() function gives back a tuple holding eigenvalues and eigenvectors.

We will obtain the eigenvalues and eigenvectors of a matrix with the eigvals() and eig() functions of the numpy.linalg subpackage. We will check the outcome by applying the dot() function:

import numpy as np 
 
A = np.mat("3 -2;1 0") 
print("A\n", A) 
 
print("Eigenvalues", np.linalg.eigvals(A)) 
 
eigenvalues, eigenvectors = np.linalg.eig(A) 
print("First...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image