Search icon CANCEL
Subscription
0
Cart icon
Cart
Close icon
You have no products in your basket yet
Save more on your purchases!
Savings automatically calculated. No voucher code required
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Python Programming for IoT

You're reading from  Practical Python Programming for IoT

Product type Book
Published in Nov 2020
Publisher Packt
ISBN-13 9781838982461
Pages 516 pages
Edition 1st Edition
Languages
Author (1):
Gary Smart Gary Smart
Profile icon Gary Smart
Toc

Table of Contents (20) Chapters close

Preface 1. Section 1: Programming with Python and the Raspberry Pi
2. Setting Up your Development Environment 3. Getting Started with Python and IoT 4. Networking with RESTful APIs and Web Sockets Using Flask 5. Networking with MQTT, Python, and the Mosquitto MQTT Broker 6. Section 2: Practical Electronics for Interacting with the Physical World
7. Connecting Your Raspberry Pi to the Physical World 8. Electronics 101 for the Software Engineer 9. Section 3: IoT Playground - Practical Examples to Interact with the Physical World
10. Turning Things On and Off 11. Lights, Indicators, and Displaying Information 12. Measuring Temperature, Humidity, and Light Levels 13. Movement with Servos, Motors, and Steppers 14. Measuring Distance and Detecting Movement 15. Advanced IoT Programming Concepts - Threads, AsyncIO, and Event Loops 16. IoT Visualization and Automation Platforms 17. Tying It All Together - An IoT Christmas Tree 18. Assessments 19. Other Books You May Enjoy

Making sound with buzzers and PWM

In the final section of this chapter, we will walk through an example of how to make simple sound and music with PWM. Our sample program is going to play a musical scale on the buzzer, and we will be using a music score format called Ring Tone Text Transfer Language (RTTTL), which was developed by Nokia in the pre-smartphone era for creating ringtones. As we learn, we can use a simple Python library to parse an RTTTL music score and turn its notes into a PWM frequency and duration that can then be used to associate a buzzer to create an auditable tune.

To make a sound with PWM, we need a form of a speaker, and we will be using what is known as a passive buzzer. Buzzers come in two basic forms:

  • Active buzzers: These buzzers contain an internal oscillator that generates a single set tone. All you need to do us apply a DC voltage to an active buzzer and it will make a noise.
  • Passive buzzers: These do not contain any internal smarts to make...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime