Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Data Analysis

You're reading from   Practical Data Analysis Pandas, MongoDB, Apache Spark, and more

Arrow left icon
Product type Paperback
Published in Sep 2016
Publisher
ISBN-13 9781785289712
Length 338 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Hector Cuesta Hector Cuesta
Author Profile Icon Hector Cuesta
Hector Cuesta
Dr. Sampath Kumar Dr. Sampath Kumar
Author Profile Icon Dr. Sampath Kumar
Dr. Sampath Kumar
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Getting Started 2. Preprocessing Data FREE CHAPTER 3. Getting to Grips with Visualization 4. Text Classification 5. Similarity-Based Image Retrieval 6. Simulation of Stock Prices 7. Predicting Gold Prices 8. Working with Support Vector Machines 9. Modeling Infectious Diseases with Cellular Automata 10. Working with Social Graphs 11. Working with Twitter Data 12. Data Processing and Aggregation with MongoDB 13. Working with MapReduce 14. Online Data Analysis with Jupyter and Wakari 15. Understanding Data Processing using Apache Spark

Getting started with SVM

SVM is a supervised classification method based in a kernel geometrical construction, as shown in the following diagram. SVM can be applied for either classification or regression, because a classification problem can be treated as a special type of regression problem, assuming that each observation is placed into one, and only one, of the categories of the values of the predictors. SVM will look for the best decision boundary that splits the points into the classes they belong to. To accomplish this SVM, we will look for the largest margin (space free of training samples parallel to the decision boundary).

In the following diagram, we can see the margin as the space between the dividing line and dotted lines, which extend support vector classifiers to accommodate nonlinear class boundaries. SVM will always look for a global solution because the algorithm only cares about the vectors close to the decision boundary. The points in the edge of the margin are the support...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime