Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mobile Artificial Intelligence Projects

You're reading from   Mobile Artificial Intelligence Projects Develop seven projects on your smartphone using artificial intelligence and deep learning techniques

Arrow left icon
Product type Paperback
Published in Mar 2019
Publisher Packt
ISBN-13 9781789344073
Length 312 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Arun Padmanabhan Arun Padmanabhan
Author Profile Icon Arun Padmanabhan
Arun Padmanabhan
Karthikeyan NG Karthikeyan NG
Author Profile Icon Karthikeyan NG
Karthikeyan NG
Matt Cole Matt Cole
Author Profile Icon Matt Cole
Matt Cole
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Artificial Intelligence Concepts and Fundamentals FREE CHAPTER 2. Creating a Real-Estate Price Prediction Mobile App 3. Implementing Deep Net Architectures to Recognize Handwritten Digits 4. Building a Machine Vision Mobile App to Classify Flower Species 5. Building an ML Model to Predict Car Damage Using TensorFlow 6. PyTorch Experiments on NLP and RNN 7. TensorFlow on Mobile with Speech-to-Text with the WaveNet Model 8. Implementing GANs to Recognize Handwritten Digits 9. Sentiment Analysis over Text Using LinearSVC 10. What is Next? 11. Other Books You May Enjoy

AI versus machine learning versus deep learning

AI is no new term given the plethora of articles we read online and the many movies based on it. So, before we proceed any further, let's take a step back and understand AI and the terms that regularly accompany it from a practitioner's point of view. We will get a clear distinction of what machine learning, deep learning, and AI are, as these terms are often used interchangeably:

AI is the capability that can be embedded into machines that allows machines to perform tasks that are characteristic of human intelligence. These tasks include seeing and recognizing objects, listening and distinguishing sounds, understanding and comprehending language, and other similar tasks.

Machine learning (ML) is a subset of AI that encompasses techniques used to make these human-like tasks possible. So, in a way, ML is what is used to achieve AI.

In essence, if we did not use ML to achieve these tasks, then we would actually be trying to write millions of lines of code with complex loops, rules, and decision trees.

ML gives machines the ability to learn without being explicitly programmed. So, instead of hardcoding rules for every possible scenario to a task, we simply provide examples of how the task is done versus how it should not be done. ML then trains the system on this provided data so it can learn for itself.

ML is an approach to AI where we can achieve tasks such as grouping or clustering, classifying, recommending, predicting, and forecasting data. Some common examples of this are classifying spam mail, stock market predictions, weather forecasting, and more.

Deep learning is a special technique in ML that emulates the human brain's biological structure and works to accomplish human-like tasks. This is done by building a network of neurons just like in the brain through an algorithmic approach using ANNs, which are stack of algorithms that can solve problems at human-like efficiency or better.

These layers are commonly referenced as deepnets (deep architectures) and each has a specific problem that it can be trained to solve. The deep learning space is currently at the cutting edge of what we see today, with applications such as autonomous driving, Alexa and Siri, machine vision, and more.

Throughout this book, we will be executing tasks and building apps that are built using these deepnets, and we will also solve use cases by building our very own deepnet architecture.

You have been reading a chapter from
Mobile Artificial Intelligence Projects
Published in: Mar 2019
Publisher: Packt
ISBN-13: 9781789344073
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image