Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Embedded Linux Programming

You're reading from   Mastering Embedded Linux Programming Unleash the full potential of Embedded Linux with Linux 4.9 and Yocto Project 2.2 (Morty) Updates

Arrow left icon
Product type Paperback
Published in Jun 2017
Publisher Packt
ISBN-13 9781787283282
Length 478 pages
Edition 2nd Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Mr. Chris Simmonds Mr. Chris Simmonds
Author Profile Icon Mr. Chris Simmonds
Mr. Chris Simmonds
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Starting Out FREE CHAPTER 2. Learning About Toolchains 3. All About Bootloaders 4. Configuring and Building the Kernel 5. Building a Root Filesystem 6. Selecting a Build System 7. Creating a Storage Strategy 8. Updating Software in the Field 9. Interfacing with Device Drivers 10. Starting Up – The init Program 11. Managing Power 12. Learning About Processes and Threads 13. Managing Memory 14. Debugging with GDB 15. Profiling and Tracing 16. Real-Time Programming

Storage options

Embedded devices need storage that takes little power and is physically compact, robust, and reliable over a lifetime of perhaps tens of years. In almost all cases, this means solid-state storage. Solid-state storage was introduced many years ago with read-only memory (ROM), but for the past 20 years, it has been flash memory of some kind. There have been several generations of flash memory in that time, progressing from NOR to NAND to managed flash such as eMMC.

NOR flash is expensive but reliable and can be mapped into the CPU address space, which allows you to execute code directly from flash. NOR flash chips are low capacity, ranging from a few megabytes to a gigabyte or so.

NAND flash memory is much cheaper than NOR and is available in higher capacities, in the range of tens of megabytes to tens of gigabytes. However, it needs a lot of hardware and software...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image