Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learning F# Functional Data Structures and Algorithms

You're reading from   Learning F# Functional Data Structures and Algorithms Get started with F# and explore functional programming paradigm with data structures and algorithms

Arrow left icon
Product type Paperback
Published in Jun 2015
Publisher Packt
ISBN-13 9781783558476
Length 206 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Adnan Masood Adnan Masood
Author Profile Icon Adnan Masood
Adnan Masood
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Embrace the Truth FREE CHAPTER 2. Now Lazily Get Over It, Again 3. What's in the Bag Anyway? 4. Are We There Yet? 5. Let's Stack Up 6. See the Forest for the Trees 7. Jumping the Queue 8. Quick Boost with Graph 9. Sets, Maps, and Vectors of Indirections 10. Where to Go Next? Index

Thinking functional – why functional programming matters

Maintainability is one of the key non-functional requirements when it comes to code upkeep. Software complexity is a deterrent for feature additions, bug fixes, reusability, and refactoring. A well-structured program is not only easy to maintain, but also easy to debug and reuse. In Why Functional Programming Matters - Research topics in functional programming, John Huges argues that modularity is key to effective software maintainability, and modularity means more than mere code segmentation. Decomposing a technology or business problem into smaller segments, and then integrating these smaller problems to build a solution, promotes modular and reusable development practices. Code must be usable before it is reusable; the higher order functions and non-strict (lazy) evaluation of functional programming help build smaller, readable, easily testable, and generic modules.

Functional programing provides abstraction but it is relatively different from the hierarchical facet which we are used to seeing in the object oriented paradigm. In contrast with the object oriented tenet of abstraction, functional abstraction hides how the code executes, and provides a protected logical environment which supports referential transparency, that is, programming without side effects. This lets the developer focus on the results based on the statement provided. Functional code is a declaration that describes the results that a developer is trying to achieve, instead of focusing on the steps to get there.

Functional syntax tends to be less verbose and more terse than its imperative or object oriented counterpart. The terseness keeps KLOC low and often results to the improved developer productivity. In terms of productivity, since functional programming promotes and encourages rapid prototyping, it benefits building and testing out proof of concept implementations. This results in code that has more brevity, is more resilient to change, and has fewer bugs.

Even though this is not strictly a feature of functional programming, several cross-cutting concerns come standard along with most functional programming languages. These include protected environments, pattern matching, tail-call optimization, immutable data structures, and garbage collection.

If you have written multi-threaded code, you'd know that debugging the concurrency issues in a multi-threaded environment is difficult to say the least. Arguably, one of the best features of functional programming is thread safety through immutability. The notion of concurrent collections in modern programming languages has its roots in functional programming. The design and use of immutable data structures prevents the process from running into race conditions and therefore does not present a need for explicit locking, semaphores, and mutex programs. This also helps in parallelization, one of the unrealized promises of functional programming.

In this book, we will discuss these and various other functional programming features in detail, especially in context of F#. As a reader who is potentially familiar with either object oriented or imperative programming, you will enjoy the use of fluent-interface methods, lazy and partial evaluation, currying and memoization, and other unique and interesting concepts that make your life as a developer more fulfilling, and easier too.

You have been reading a chapter from
Learning F# Functional Data Structures and Algorithms
Published in: Jun 2015
Publisher: Packt
ISBN-13: 9781783558476
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime