Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Haskell Data Analysis cookbook

You're reading from   Haskell Data Analysis cookbook Explore intuitive data analysis techniques and powerful machine learning methods using over 130 practical recipes

Arrow left icon
Product type Paperback
Published in Jun 2014
Publisher
ISBN-13 9781783286331
Length 334 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Nishant Shukla Nishant Shukla
Author Profile Icon Nishant Shukla
Nishant Shukla
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. The Hunt for Data FREE CHAPTER 2. Integrity and Inspection 3. The Science of Words 4. Data Hashing 5. The Dance with Trees 6. Graph Fundamentals 7. Statistics and Analysis 8. Clustering and Classification 9. Parallel and Concurrent Design 10. Real-time Data 11. Visualizing Data 12. Exporting and Presenting Index

Implementing MapReduce to count word frequencies

MapReduce is a framework for efficient parallel algorithms that take advantage of divide and conquer. If a task can be split into smaller tasks, and the results of each individual task can be combined to form the final answer, then MapReduce is likely the best framework for this job.

In the following figure, we can see that a large list is split up, and the mapper functions work in parallel on each split. After all the mapping is complete, the second phase of the framework kicks in, reducing the various calculations into one final answer.

In this recipe, we will be counting word frequencies in a large corpus of text. Given many files of words, we will apply the MapReduce framework to find the word frequencies in parallel.

Implementing MapReduce to count word frequencies

Getting ready

Install the parallel package using cabal as follows:

$ cabal install parallel

Create multiple files with words. In this recipe, we download a huge text file and split it up using the UNIX split command as follows...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime