Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits
Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits: A practical guide to implementing supervised and unsupervised machine learning algorithms in Python

eBook
$9.99 $29.99
Paperback
$43.99
Subscription
Free Trial
Renews at $19.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits

Introduction to Machine Learning

Machine learning is everywhere. When you book a flight ticket, an algorithm decides the price you are going to pay for it. When you apply for a loan, machine learning may decide whether you are going to get it or not. When you scroll through your Facebook timeline, it picks which advertisements to show to you. Machine learning also plays a big role in your Google search results. It organizes your email's inbox and filters out spam, it goes through your resumé before recruiters when you apply for a job, and, more recently, it has also started to play the role of your personal assistant in the form of Siri and other virtual assistants.

In this book, we will learn about the theory and practice of machine learning. We will understand when and how to apply it. To get started, we will look at a high-level introduction to how machine learning works. You will then be able to differentiate...

Understanding machine learning

You may be wondering how machines actually learn. To get the answer to this query, let's take the following example of a fictional company. Space Shuttle Corporation has a few space vehicles to rent. They get applications every day from clients who want to travel to Mars. They are not sure whether those clients will ever return the vehicles—maybe they'll decide to continue living on Mars and never come back again. Even worse, some of the clients may be lousy pilots and crash their vehicles on the way. So, the company decides to hire shuttle rent-approval officers whose job is to go through the applications and decide who is worthy of a shuttle ride. Their business, however, grows so big that they need to formulate the shuttle-approval process.

A traditional shuttle company would start by having business rules and hiring junior employees to execute those rules. For example, if you are an alien, then sorry, you cannot rent...

The model development life cycle

When asked to solve a problem using machine learning, data scientists achieve this by following a sequence of steps. In this section, we are going to discuss those iterative steps.

Understanding a problem

"All models are wrong, but some are useful."
– George Box

The first thing to do when developing a model is to understand the problem you are trying to solve thoroughly. This not only involves understanding what problem you are solving, but also why you are solving it, what impact are you expecting to have, and what the currently available solution isthat you are comparing your new solution to. My understanding of what Box said when he stated that all models are wrong is that a model is just an approximation of reality by modeling one or more angles of it. By understanding the problem you are trying to solve, you can decide which angles of reality you need to model, and which ones you can tolerate...

Introduction to scikit-learn

Since you have already picked up this book, you probably don't need me to convince you why machine learning is important. However, you may still have doubts about why to use scikit-learn in particular. You may encounter names such as TensorFlow, PyTorch, and Spark more often during your daily news consumption than scikit-learn. So, let me convince you of my preference for the latter.

It plays well with the Python data ecosystem

scikit-learn is a Python toolkit built on top of NumPy, SciPy, and Matplotlib. These choices mean that it fits well into your daily data pipeline. As a data scientist, Python is most likely your language of choice since it is good for both offline analysis and real-time implementations. You will also be using tools such as pandas to load data from your database, which allows you to perform a vast amount of transformation to your data. Since both pandas and scikit-learn are built on top of NumPy, they play...

Installing the packages you need

It's time to install the packages we will need in this book, but first of all, make sure you have Python installed on your computer. In this book, we will be using Python version 3.6. If your computer comes with Python 2.x installed, then you should upgrade Python to version 3.6 or later. I will show you how to install the required packages using pip, Python's de facto package-management system. If you use other package-management systems, such as Anaconda, you can easily find the equivalent installation commands for each of the following packages online.

To install scikit-learn, run the following command:

          $ pip install --upgrade scikit-learn==0.22
        

I will be using version 0.22 of scikit-learn here. You can add the --userswitch to the pip command to limit the installation to your own directories. This is important if you do not have root access to your machine or if you do not want to install...

Summary

Mastering machine learning is a desirable skill nowadays given its vast application everywhere, from business to academia. Nevertheless, just understanding the theory of it will only take you so far since practitioners also need to understand their tools to be self-sufficient and capable.

In this chapter, we started with a high-level introduction to machine learning and learned when to use each of the machine learning types; from classification and regression to clustering and reinforcement learning. We then learned about scikit-learn and why practitioners recommend it when solving both supervised and unsupervised learning problems. To keep this book self-sufficient, we also covered the basics of data manipulation for those who haven't used libraries such as pandas and Matplotlib before. In the following chapters, we will continue to combine our understanding of the underlying theory of machine learning with more practical examples using scikit-learn.

...

Further reading

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Delve into machine learning with this comprehensive guide to scikit-learn and scientific Python
  • Master the art of data-driven problem-solving with hands-on examples
  • Foster your theoretical and practical knowledge of supervised and unsupervised machine learning algorithms

Description

Machine learning is applied everywhere, from business to research and academia, while scikit-learn is a versatile library that is popular among machine learning practitioners. This book serves as a practical guide for anyone looking to provide hands-on machine learning solutions with scikit-learn and Python toolkits. The book begins with an explanation of machine learning concepts and fundamentals, and strikes a balance between theoretical concepts and their applications. Each chapter covers a different set of algorithms, and shows you how to use them to solve real-life problems. You’ll also learn about various key supervised and unsupervised machine learning algorithms using practical examples. Whether it is an instance-based learning algorithm, Bayesian estimation, a deep neural network, a tree-based ensemble, or a recommendation system, you’ll gain a thorough understanding of its theory and learn when to apply it. As you advance, you’ll learn how to deal with unlabeled data and when to use different clustering and anomaly detection algorithms. By the end of this machine learning book, you’ll have learned how to take a data-driven approach to provide end-to-end machine learning solutions. You’ll also have discovered how to formulate the problem at hand, prepare required data, and evaluate and deploy models in production.

Who is this book for?

This book is for data scientists, machine learning practitioners, and anyone who wants to learn how machine learning algorithms work and to build different machine learning models using the Python ecosystem. The book will help you take your knowledge of machine learning to the next level by grasping its ins and outs and tailoring it to your needs. Working knowledge of Python and a basic understanding of underlying mathematical and statistical concepts is required.

What you will learn

  • Understand when to use supervised, unsupervised, or reinforcement learning algorithms
  • Find out how to collect and prepare your data for machine learning tasks
  • Tackle imbalanced data and optimize your algorithm for a bias or variance tradeoff
  • Apply supervised and unsupervised algorithms to overcome various machine learning challenges
  • Employ best practices for tuning your algorithm's hyper parameters
  • Discover how to use neural networks for classification and regression
  • Build, evaluate, and deploy your machine learning solutions to production

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jul 24, 2020
Length: 384 pages
Edition : 1st
Language : English
ISBN-13 : 9781838826048
Category :
Languages :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Jul 24, 2020
Length: 384 pages
Edition : 1st
Language : English
ISBN-13 : 9781838826048
Category :
Languages :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 131.97
Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits
$43.99
Hands-On Python Natural Language Processing
$43.99
Hands-On Mathematics for Deep Learning
$43.99
Total $ 131.97 Stars icon
Banner background image

Table of Contents

17 Chapters
Section 1: Supervised Learning Chevron down icon Chevron up icon
Introduction to Machine Learning Chevron down icon Chevron up icon
Making Decisions with Trees Chevron down icon Chevron up icon
Making Decisions with Linear Equations Chevron down icon Chevron up icon
Preparing Your Data Chevron down icon Chevron up icon
Image Processing with Nearest Neighbors Chevron down icon Chevron up icon
Classifying Text Using Naive Bayes Chevron down icon Chevron up icon
Section 2: Advanced Supervised Learning Chevron down icon Chevron up icon
Neural Networks – Here Comes Deep Learning Chevron down icon Chevron up icon
Ensembles – When One Model Is Not Enough Chevron down icon Chevron up icon
The Y is as Important as the X Chevron down icon Chevron up icon
Imbalanced Learning – Not Even 1% Win the Lottery Chevron down icon Chevron up icon
Section 3: Unsupervised Learning and More Chevron down icon Chevron up icon
Clustering – Making Sense of Unlabeled Data Chevron down icon Chevron up icon
Anomaly Detection – Finding Outliers in Data Chevron down icon Chevron up icon
Recommender System – Getting to Know Their Taste Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.8
(4 Ratings)
5 star 75%
4 star 25%
3 star 0%
2 star 0%
1 star 0%
Adam Powell Sep 21, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
The perfect read for an analyst that wants to transition into machine learning. It broadly covers all the key algorithms with an insightful practitioner's perspective. Highly recommended!
Amazon Verified review Amazon
Sara Oct 25, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book is an excellent introductory book for data scientists learning machine learning and any curious people wanting to know what it takes to develop and build machine learning algorithms.The book covers the basic concepts, the terminology, and goes into detail about implementing these algorithms using Python and one of the most well-known machine learning libraries Scikit-learn.The book introduces these complex concepts is straightforward and easy to understand, even if the reader doesn't have any maths background.It contains many real-life applications of machine learning with code that the reader can follow and use to build more significant applications.I would recommend this book to anyone getting started with machine learning. This book will give you the concrete knowledge you need to start building your own machine learning applications.
Amazon Verified review Amazon
Przemyslaw Chojecki Sep 02, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
If you've already did a couple of data science projects, had a basic understanding of Python, did some visualisation and want to go deeper into some details of what it means to analyse data, then this book is for you.This is a practical guide to both supervised and unsupervised learning with plenty of examples in code.The main focus is on imperfect data and how to make sense of these imperfections through various machine learning algorithms.The author discusses standard data science algorithms using scikit-learn library which gives a coherent overview of the subjest. You will learn decision trees, KNN classification, Naive Bayes and much more; applied to classical datasets like Iris dataset, Boston housing prices or Fashion-MNIST.Recommended for beginning data scientists!
Amazon Verified review Amazon
Matthew Emerick Aug 10, 2020
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
About This BookThis is a guide for newcomers to machine learning who want to start learning one of the core Python ML libraries. This book focuses on scikit-learn, though discusses other related libraries as needed. We see several algorithms developed from the ground up, which aids in understanding what is going on and why things work the way they do.Who is This For?The author makes the following claim, taken directly from the preface: "This book is for machine learning data scientists who want to master the theoretical and practical sides of machine learning algorithms and understand how to use them to solve real-life problems." This a big claim for a 384 page introductory book.Why Was This Written?scikit-learn is a powerful library that is essential for machine learning in Python. Every ML developer needs to learn the basics, and this can be a good book for that. Several machine learning algorithms, both supervised and unsupervised, are covered in a fair amount of detail. As was mentioned, the book intends the reader to master machine learning and does indeed introduce the reader to important terms, algorithms, and some of the theory.OrganizationThe book starts out with a very brief introduction to machine learning, finishing up the chapter with instructions on how to set up your computer to run the included code. The book then surges forward by discussing its first algorithm. I did find it odd that a chapter on preparing your data is found after the first couple algorithms. The book focuses on supervised machine learning with only the last three chapters discussing unsupervised learning.Did This Book Succeed?I think that the computer setup would have been better left in the preface while the ML introduction could have been expanded. After reading this book, the reader will have an understanding of a selection of algorithms, enough to get a junior software developer role on a team, but will need to dig deeper to a better understanding. If you simply want to learn a bit about the subject, then this is a good book.Rating and Final ThoughtsThis is a useful book, but I feel it misses the mark by trying to do too many things. If one were to truly master machine learning, this book might be an aid early on, but is only one step. Important concepts were discussed, and even bolded, but there was no glossary at the end to make it easy to look up the terms later on; you have to use the index to find where the term was originally used and look there. There are a great many algorithms not discussed and theory left out.I have to give this book a 3.5 out of 5. It's useful, especially to the ML beginner, but it misses its own goal. A cookbook style might have worked better, focusing on either ML or scikit-learn.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.