Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Hands-On Machine Learning with C++
Hands-On Machine Learning with C++

Hands-On Machine Learning with C++: Build, train, and deploy end-to-end machine learning and deep learning pipelines

Arrow left icon
Profile Icon Kirill Kolodiazhnyi
Arrow right icon
$19.99 per month
Full star icon Full star icon Full star icon Half star icon Empty star icon 3.8 (6 Ratings)
Paperback May 2020 530 pages 1st Edition
eBook
$9.99 $38.99
Paperback
$54.99
Subscription
Free Trial
Renews at $19.99p/m
Arrow left icon
Profile Icon Kirill Kolodiazhnyi
Arrow right icon
$19.99 per month
Full star icon Full star icon Full star icon Half star icon Empty star icon 3.8 (6 Ratings)
Paperback May 2020 530 pages 1st Edition
eBook
$9.99 $38.99
Paperback
$54.99
Subscription
Free Trial
Renews at $19.99p/m
eBook
$9.99 $38.99
Paperback
$54.99
Subscription
Free Trial
Renews at $19.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Hands-On Machine Learning with C++

Introduction to Machine Learning with C++

There are different approaches to make computers solve tasks. One of them is to define an explicit algorithm, and another one is to use implicit strategies based on mathematical and statistical methods. Machine Learning (ML) is one of the implicit methods that uses mathematical and statistical approaches to solve tasks. It is an actively growing discipline, and a lot of scientists and researchers find it to be one of the best ways to move forward toward systems acting as human-level artificial intelligence (AI).

In general, ML approaches have the idea of searching patterns in a given dataset as their basis. Consider a recommendation system for a news feed, which provides the user with a personalized feed based on their previous activity or preferences. The software gathers information about the type of news article the user reads and calculates some statistics. For example, it could be the frequency of some topics appearing in a set of news articles. Then, it performs some predictive analytics, identifies general patterns, and uses them to populate the user's news feed. Such systems periodically track a user's activity, and update the dataset and calculate new trends for recommendations.

There are many areas where ML has started to play an important role. It is used for solving enterprise business tasks as well as for scientific researches. In customer relationship management (CRM) systems, ML models are used to analyze sales team activity, to help them to process the most important requests first. ML models are used in business intelligence (BI) and analytics to find essential data points. Human resource (HR) departments use ML models to analyze their employees' characteristics in order to identify the most effective ones and use this information when searching applicants for open positions.

A fast-growing direction of research is self-driving cars, and deep learning neural networks are used extensively in this area. They are used in computer vision systems for object identification as well as for navigation and steering systems, which are necessary for car driving.

Another popular use of ML systems is electronic personal assistants, such as Siri from Apple or Alexa from Amazon. Such products also use deep learning models to analyze natural speech or written text to process users' requests and make a natural response in a relevant context. Such requests can activate music players with preferred songs, as well as update a user's personal schedule or book flight tickets.

This chapter describes what ML is and which tasks can be solved with ML, and discusses different approaches used in ML. It aims to show the minimally required math to start implementing ML algorithms. It also covers how to perform basic linear algebra operations in libraries such as Eigen, xtensor, Shark-ML, Shogun, and Dlib, and also explains the linear regression task as an example.

The following topics will be covered in this chapter:

  • Understanding the fundamentals of ML
  • An overview of linear algebra
  • An overview of a linear regression example

Understanding the fundamentals of ML

There are different approaches to create and train ML models. In this section, we show what these approaches are and how they differ. Apart from the approach we use to create a ML model, there are also parameters that manage how this model behaves in the training and evaluation processes. Model parameters can be divided into two distinct groups, which should be configured in different ways. The last crucial part of the ML process is a technique that we use to train a model. Usually, the training technique uses some numerical optimization algorithm that finds the minimal value of a target function. In ML, the target function is usually called a loss function and is used for penalizing the training algorithm when it makes errors. We discuss these concepts more precisely in the following sections.

Venturing into the techniques of ML

We can divide ML approaches into two techniques, as follows:

  • Supervised learning is an approach based on the use of labeled data. Labeled data is a set of known data samples with corresponding known target outputs. Such a kind of data is used to build a model that can predict future outputs.
  • Unsupervised learning is an approach that does not require labeled data and can search hidden patterns and structures in an arbitrary kind of data.

Let's have a look at each of the techniques in detail.

Supervised learning

Supervised ML algorithms usually take a limited set of labeled data and build models that can make reasonable predictions for new data. We can split supervised learning algorithms into two main parts, classification and regression techniques, described as follows:

  • Classification models predict some finite and distinct types of categories—this could be a label that identifies if an email is spam or not, or whether an image contains a human face or not. Classification models are applied in speech and text recognition, object identification on images, credit scoring, and others. Typical algorithms for creating classification models are Support Vector Machine (SVM), decision tree approaches, k-nearest neighbors (KNN), logistic regression, Naive Bayes, and neural networks. The following chapters describe the details of some of these algorithms.
  • Regression models predict continuous responses such as changes in temperature or values of currency exchange rates. Regression models are applied in algorithmic trading, forecasting of electricity load, revenue prediction, and others. Creating a regression model usually makes sense if the output of the given labeled data is real numbers. Typical algorithms for creating regression models are linear and multivariate regressions, polynomial regression models, and stepwise regressions. We can use decision tree techniques and neural networks to create regression models too. The following chapters describe the details of some of these algorithms.

Unsupervised learning

Unsupervised learning algorithms do not use labeled datasets. They create models that use intrinsic relations in data to find hidden patterns that they can use for making predictions. The most well-known unsupervised learning technique is clustering. Clustering involves dividing a given set of data in a limited number of groups according to some intrinsic properties of data items. Clustering is applied in market researches, different types of exploratory analysis, deoxyribonucleic acid (DNA) analysis, image segmentation, and object detection. Typical algorithms for creating models for performing clustering are k-means, k-medoids, Gaussian mixture models, hierarchical clustering, and hidden Markov models. Some of these algorithms are explained in the following chapters of this book.

Dealing with ML models

We can interpret ML models as functions that take different types of parameters. Such functions provide outputs for given inputs based on the values of these parameters. Developers can configure the behavior of ML models for solving problems by adjusting model parameters. Training a ML model can usually be treated as a process of searching the best combination of its parameters. We can split the ML model's parameters into two types. The first type consists of parameters internal to the model, and we can estimate their values from the training (input) data. The second type consists of parameters external to the model, and we cannot estimate their values from training data. Parameters that are external to the model are usually called hyperparameters.

Internal parameters have the following characteristics:

  • They are necessary for making predictions.
  • They define the quality of the model on the given problem.
  • We can learn them from training data.
  • Usually, they are a part of the model.

If the model contains a fixed number of internal parameters, it is called parametric. Otherwise, we can classify it as non-parametric.

Examples of internal parameters are as follows:

  • Weights of artificial neural networks (ANNs)
  • Support vector values for SVM models
  • Polynomial coefficients for linear regression or logistic regression

On the other hand, hyperparameters have the following characteristics:

  • They are used to configure algorithms that estimate model parameters.
  • The practitioner usually specifies them.
  • Their estimation is often based on using heuristics.
  • They are specific to a concrete modeling problem.

It is hard to know the best values for a model's hyperparameters for a specific problem. Also, practitioners usually need to perform additional research on how to tune required hyperparameters so that a model or a training algorithm behaves in the best way. Practitioners use rules of thumb, copying values from similar projects, as well as special techniques such as grid search for hyperparameter estimation.

Examples of hyperparameters are as follows:

  • C and sigma parameters used in the SVM algorithm for a classification quality configuration
  • The learning rate parameter that is used in the neural network training process to configure algorithm convergence
  • The k value that is used in the KNN algorithm to configure the number of neighbors

Model parameter estimation

Model parameter estimation usually uses some optimization algorithm. The speed and quality of the resulting model can significantly depend on the optimization algorithm chosen. Research on optimization algorithms is a popular topic in industry, as well as in academia. ML often uses optimization techniques and algorithms based on the optimization of a loss function. A function that evaluates how well a model predicts on the data is called a loss function. If predictions are very different from the target outputs, the loss function will return a value that can be interpreted as a bad one, usually a large number. In such a way, the loss function penalizes an optimization algorithm when it moves in the wrong direction. So, the general idea is to minimize the value of the loss function to reduce penalties. There is no one universal loss function for optimization algorithms. Different factors determine how to choose a loss function. Examples of such factors are as follows:

  • Specifics of the given problem—for example, if it is a regression or a classification model
  • Ease of calculating derivatives
  • Percentage of outliers in the dataset

In ML, the term optimizer is used to define an algorithm that connects a loss function and a technique for updating model parameters in response to the values of the loss function. So, optimizers tune ML models to predict target values for new data in the most accurate way by fitting model parameters. There are many optimizers: Gradient Descent, Adagrad, RMSProp, Adam, and others. Moreover, developing new optimizers is an active area of research. For example, there is the ML and Optimization research group at Microsoft (located in Redmond) whose research areas include combinatorial optimization, convex and non-convex optimization, and their application in ML and AI. Other companies in the industry also have similar research groups; there are many publications from Facebook Research, Amazon Research, and OpenAI groups.

An overview of linear algebra

The concepts of linear algebra are essential for understanding the theory behind ML because they help us understand how ML algorithms work under the hood. Also, most ML algorithm definitions use linear algebra terms.

Linear algebra is not only a handy mathematical instrument, but also the concepts of linear algebra can be very efficiently implemented with modern computer architectures. The rise of ML, and especially deep learning, began after significant performance improvement of the modern Graphics Processing Unit (GPU). GPUs were initially designed to work with linear algebra concepts and massive parallel computations used in computer games. After that, special libraries were created to work with general linear algebra concepts. Examples of libraries that implement basic linear algebra routines are Cuda and OpenCL, and one example of a specialized linear algebra library is cuBLAS. Moreover, it became more common to use general-purpose graphics processing units (GPGPUs) because these turn the computational power of a modern GPU into a powerful general-purpose computing resource.

Also, Central Processing Units (CPUs) have instruction sets specially designed for simultaneous numerical computations. Such computations are called vectorized, and common vectorized instruction sets are AVx, SSE, and MMx. There is also a term Single Instruction Multiple Data (SIMD) for these instruction sets. Many numeric linear algebra libraries, such as Eigen, xtensor, VienaCL, and others, use them to improve computational performance.

Learning the concepts of linear algebra

Linear algebra is a big area. It is the section of algebra that studies objects of a linear nature: vector (or linear) spaces, linear representations, and systems of linear equations. The main tools used in linear algebra are determinants, matrices, conjugation, and tensor calculus.

To understand ML algorithms, we only need a small set of linear algebra concepts. However, to do researches on new ML algorithms, a practitioner should have a deep understanding of linear algebra and calculus.

The following list contains the most valuable linear algebra concepts for understanding ML algorithms:

  • Scalar: This is a single number.
  • Vector: This is an array of ordered numbers. Each element has a distinct index. Notation for vectors is a bold lowercase typeface for names and an italic typeface with a subscript for elements, as shown in the following example:
  • Matrix: This is a two-dimensional array of numbers. Each element has a distinct pair of indices. Notation for matrices is a bold uppercase typeface for names and an italic but not bold typeface with a comma-separated list of indices in subscript for elements, as shown in the following example:
  • Tensor: This is an array of numbers arranged in a multidimensional regular grid, and represents generalizations of matrices. It is like a multidimensional matrix. For example, tensor A with dimensions 2 x 2 x 2 can look like this:

Linear algebra libraries and ML frameworks usually use the concept of a tensor instead of a matrix because they implement general algorithms, and a matrix is just a special case of a tensor with two dimensions. Also, we can consider a vector as a matrix of size n x 1.

Basic linear algebra operations

The most common operations used for programming linear algebra algorithms are the following ones:

  • Element-wise operations: These are performed in an element-wise manner on vectors, matrices, or tensors of the same size. The resulting elements will be the result of operations on corresponding input elements, as shown here:

The following example shows the element-wise summation:

  • Dot product: There are two types of multiplications for tensor and matrices in linear algebra—one is just element-wise, and the second is the dot product. The dot product deals with two equal-length series of numbers and returns a single number. This operation applied on matrices or tensors requires that the matrix or tensor A has the same number of columns as the number of rows in the matrix or tensor B. The following example shows the dot-product operation in the case when A is an n x m matrix and B is an m x p matrix:

  • Transposing: The transposing of a matrix is an operation that flips the matrix over its diagonal, which leads to the flipping of the column and row indices of the matrix, resulting in the creation of a new matrix. In general, it is swapping matrix rows with columns. The following example shows how transposing works:
  • Norm: This operation calculates the size of the vector; the result of this is a non-negative real number. The norm formula is as follows:

The generic name of this type of norm is norm for . Usually, we use more concrete norms such as an norm with p = 2, which is known as the Euclidean norm, and we can interpret it as the Euclidean distance between points. Another widely used norm is the squared norm, whose calculation formula is . The squared norm is more suitable for mathematical and computational operations than the norm. Each partial derivative of the squared norm depends only on the corresponding element of x, in comparison to the partial derivatives of the norm which depends on the entire vector; this property plays a vital role in optimization algorithms. Another widely used norm operation is the norm with p=1, which is commonly used in ML when we care about the difference between zero and nonzero elements.

  • Inverting: The inverse matrix is such a matrix that , where I is an identity matrix. The identity matrix is a matrix that does not change any vector when we multiply that vector by that matrix.

We considered the main linear algebra concepts as well as operations on them. Using this math apparatus, we can define and program many ML algorithms. For example, we can use tensors and matrices to define training datasets for training, and scalars can be used as different types of coefficients. We can use element-wise operations to perform arithmetic operations with a whole dataset (a matrix or a tensor). For example, we can use element-wise multiplication to scale a dataset. We usually use transposing to change a view of a vector or matrix to make them suitable for the dot-product operation. The dot product is usually used to apply a linear function with weights expressed as matrix coefficients to a vector; for example, this vector can be a training sample. Also, dot-product operations are used to update model parameters expressed as matrix or tensor coefficients according to an algorithm.

The norm operation is often used in formulas for loss functions because it naturally expresses the distance concept and can measure the difference between target and predicted values. The inverse matrix is a crucial concept for the analytical solving of linear equations systems. Such systems often appear in different optimization problems. However, calculating the inverse matrix is very computationally expensive.

Tensor representation in computing

We can represent tensor objects in computer memory in different ways. The most obvious method is a simple linear array in computer memory (random-access memory, or RAM). However, the linear array is also the most computationally effective data structure for modern CPUs. There are two standard practices to organize tensors with a linear array in memory: row-major ordering and column-major ordering. In row-major ordering, we place consecutive elements of a row in linear order one after the other, and each row is also placed after the end of the previous one. In column-major ordering, we do the same but with the column elements. Data layouts have a significant impact on computational performance because the speed of traversing an array relies on modern CPU architectures that work with sequential data more efficiently than with non-sequential data. CPU caching effects are the reasons for such behavior. Also, a contiguous data layout makes it possible to use SIMD vectorized instructions that work with sequential data more efficiently, and we can use them as a type of parallel processing.

Different libraries, even in the same programming language, can use different ordering. For example, Eigen uses column-major ordering, but PyTorch uses row-major ordering. So, developers should be aware of internal tensor representation in libraries they use, and also take care of this when performing data loading or implementing algorithms from scratch.

Consider the following matrix:

Then, in the row-major data layout, members of the matrix will have the following layout in memory:

0

1

2

3

4

5

a11

a12

a13

a21

a22

a23

In the case of the column-major data layout, order layout will be the next, as shown here:

0

1

2

3

4

5

a11

a21

a12

a22

a13

a23

Linear algebra API samples

Consider some C++ linear algebra APIs (short for Application Program Interface), and look at how we can use them for creating linear algebra primitives and perform algebra operations with them.

Using Eigen

Eigen is a general-purpose linear algebra C++ library. In Eigen, all matrices and vectors are objects of the Matrix template class, and the vector is a specialization of the matrix type, with either one row or one column. Tensor objects are not presented in official APIs but exist as submodules.

We can define the type for a matrix with known dimensions and floating-point data type like this:

typedef Eigen::Matrix<float, 3, 3> MyMatrix33f;

We can define a vector in the following way:

typedef Eigen::Matrix<float, 3, 1> MyVector3f;

Eigen already has a lot of predefined types for vector and matrix objects—for example, Eigen::Matrix3f (floating-point 3x3 matrix type) or Eigen::RowVector2f (floating-point 1 x 2 vector type). Also, Eigen is not limited to matrices whose dimensions we know at compile time. We can define matrix types that will take the number of rows or columns at initialization during runtime. To define such types, we can use a special type variable for the Matrix class template argument named Eigen::Dynamic. For example, to define a matrix of doubles with dynamic dimensions, we can use the following definition:

typedef Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> MyMatrix;

Objects initialized from the types we defined will look like this:

MyMatrix33f a;
MyVector3f v;
MyMatrix m(10,15);

To put some values into these objects, we can use several approaches. We can use special predefined initialization functions, as follows:

a = MyMatrix33f::Zero(); // fill matrix elements with zeros
a = MyMatrix33f::Identity(); // fill matrix as Identity matrix
v = MyVector3f::Random(); // fill matrix elements with random values

We can use the comma-initializer syntax, as follows:

a << 1,2,3,
4,5,6,
7,8,9;

This code construction initializes the matrix values in the following way:

We can use direct element access to set or change matrix coefficients. The following code sample shows how to use the () operator for such an operation:

a(0,0) = 3;

We can use the object of the Map type to wrap an existent C++ array or vector in the Matrix type object. This kind of mapping object will use memory and values from the underlying object, and will not allocate the additional memory and copy the values. The following snippet shows how to use the Map type:

int data[] = {1,2,3,4};
Eigen::Map<Eigen::RowVectorxi> v(data,4);
std::vector<float> data = {1,2,3,4,5,6,7,8,9};
Eigen::Map<MyMatrix33f> a(data.data());

We can use initialized matrix objects in mathematical operations. Matrix and vector arithmetic operations in the Eigen library are offered either through overloads of standard C++ arithmetic operators such as +, -, *, or through methods such as dot() and cross(). The following code sample shows how to express general math operations in Eigen:

using namespace Eigen;   
auto a = Matrix2d::Random();
auto b = Matrix2d::Random();
auto result = a + b;
result = a.array() * b.array(); // element wise multiplication
result = a.array() / b.array();
a += b;
result = a * b; // matrix multiplication
//Also it’s possible to use scalars:
a = b.array() * 4;

Notice that in Eigen, arithmetic operators such as operator+ do not perform any computation by themselves. These operators return an expression object, which describes what computation to perform. The actual computation happens later when the whole expression is evaluated, typically in the operator= arithmetic operator. It can lead to some strange behaviors, primarily if a developer uses the auto keyword too frequently.

Sometimes, we need to perform operations only on a part of the matrix. For this purpose, Eigen provides the block method, which takes four parameters: i,j,p,q. These parameters are the block size p,q and the starting point i,j. The following code shows how to use this method:

Eigen::Matrixxf m(4,4);
Eigen::Matrix2f b = m.block(1,1,2,2); // copying the middle part of matrix
m.block(1,1,2,2) *= 4; // change values in original matrix

There are two more methods to access rows and columns by index, which are also a type of block operation. The following snippet shows how to use the col and the row methods:

m.row(1).array() += 3;
m.col(2).array() /= 4;

Another important feature of linear algebra libraries is broadcasting, and Eigen supports this with the colwise and rowwise methods. Broadcasting can be interpreted as a matrix by replicating it in one direction. Take a look at the following example of how to add a vector to each column of the matrix:

Eigen::Matrixxf mat(2,4);
Eigen::Vectorxf v(2); // column vector
mat.colwise() += v;

This operation has the following result: .

Using xtensor

The xtensor library is a C++ library for numerical analysis with multidimensional array expressions. Containers of xtensor are inspired by NumPy, the Python array programming library. ML algorithms are mainly described using Python and NumPy, so this library can make it easier to move them to C++. The following container classes implement multidimensional arrays in the xtensor library.

The xarray type is a dynamically sized multidimensional array, as shown in the following code snippet:

std::vector<size_t> shape = { 3, 2, 4 };
xt::xarray<double, xt::layout_type::row_major> a(shape);

The xtensor type is a multidimensional array whose dimensions are fixed at compilation time. Exact dimension values can be configured in the initialization step, as shown in the following code snippet:

std::array<size_t, 3> shape = { 3, 2, 4 };
xt::xtensor<double, 3> a(shape);

The xtensor_fixed type is a multidimensional array with a dimension shape fixed at compile time, as shown in the following code snippet:

xt::xtensor_fixed<double, xt::xshape<3, 2, 4>> a;

The xtensor library also implements arithmetic operators with expression template techniques such as Eigen (this is a common approach for math libraries implemented in C++). So, the computation happens lazily, and the actual result is calculated when the whole expression is evaluated. The container definitions are also expressions. There is also a function to force an expression evaluation named xt::eval in the xtensor library.

There are different kinds of container initialization in the xtensor library.
Initialization of xtensor arrays can be done with C++ initializer lists, as follows:

        xt::xarray<double> arr1{{1.0, 2.0, 3.0},
{2.0, 5.0, 7.0},
{2.0, 5.0, 7.0}}; // initialize a 3x3 array

The xtensor library also has builder functions for special tensor types. The following snippet shows some of them:

std::vector<uint64_t> shape = {2, 2};
xt::ones(shape);
xt::zero(shape);
xt::eye(shape); //matrix with ones on the diagonal

Also, we can map existing C++ arrays into the xtensor container with the xt::adapt function. This function returns the object that uses the memory and values from the underlying object, as shown in the following code snippet:

std::vector<float> data{1,2,3,4};
std::vector<size_t> shape{2,2};
auto data_x = xt::adapt(data, shape);

We can use direct access to container elements, with the () operator, to set or change tensor values, as shown in the following code snippet:

std::vector<size_t> shape = {3, 2, 4};
xt::xarray<float> a = xt::ones<float>(shape);
a(2,1,3) = 3.14f;

The xtensor library implements linear algebra arithmetic operations through overloads of standard C++ arithmetic operators such as +, - and *. To use other operations such as dot-product operations, we have to link an application with the library named xtensor-blas. These operators are declared in the xt::linalg namespace.

The following code shows the use of arithmetic operations with the xtensor library:

auto a = xt::random::rand<double>({2,2});
auto b = xt::random::rand<double>({2,2});
auto c = a + b;
a -= b;
c = xt::linalg::dot(a,b);
c = a + 5;

To get partial access to the xtensor containers, we can use the xt::view function. The following sample shows how this function works:

xt::xarray<int> a{{1,  2,  3,  4},
{5, 6, 7, 8}
{9, 10, 11, 12}
{13, 14, 15, 16}};
auto b = xt::view(a, xt::range(1, 3), xt::range(1, 3));

This operation takes a rectangular block from the tensor, which looks like this:

The xtensor library implements automatic broadcasting in most cases. When the operation involves two arrays of different dimensions, it transmits the array with the smaller dimension across the leading dimension of the other array, so we can directly add a vector to a matrix. The following code sample shows how easy it is:

auto m = xt::random::rand<double>({2,2});
auto v = xt::random::rand<double>({2,1});
auto c = m + v;

Using Shark-ML

Shark-ML is a C++ ML library with rich functionality. It also provides an API for linear algebra routines.

There are four container classes for representing matrices and vectors in the Shark-ML library. Notice that the linear algebra functionality is declared in the remora namespace instead of the shark namespace, which is used for other routines.

The following code sample shows container classes that exist in the Shark-ML library, wherein the vector type is a dynamically sized array:

remora::vector<double> b(100, 1.0); // vector of size 100 and filled with 1.0

The compressed_vector type is a sparse array storing values in a compressed format.

The matrix type is a dynamically sized dense matrix, as shown in the following code snippet:

remora::matrix<double> C(2, 2); // 2x2 matrix

The compressed_matrix type is a sparse matrix storing values in a compressed format.

There are two main types of container initialization in the Shark-ML library.

We can initialize a container object with the constructor that takes the initializer list. The following code sample shows this:

remora::matrix<float> m_ones{{1, 1}, {1, 1}}; // 2x2 matrix

The second option is to wrap the existing C++ array into the container object and reuse its memory and values. The following code sample shows how to use the same array for the initialization of matrix and vector objects:

float data[]= {1,2,3,4};
remora::matrix<float> m(data, 2, 2);
remora::vector<float> v(data, 4);

Also, we can initialize values with direct access to the container elements, with the () operator. The following code sample shows how to set a value for matrix and vector objects:

remora::matrix<float> m(data, 2, 2);
m(0,0) = 3.14f;
remora::vector<float> v(data, 4);
v(0) = 3.14f;

The Shark-ML library implements linear algebra arithmetic operations through overloads of standard C++ arithmetic operators such as +, - and *. Some other operations such as the dot product are implemented as standalone functions.

The following code sample shows how to use arithmetic operations in the Shark-ML library:

remora::matrix<float> a(data, 2, 2);
remora::matrix<float> b(data, 2, 2);
auto c = a + b;
a -= b;
c = remora::prod(a,b);
c = a%b; // also dot product operation
c = a + 5;

We can use the following functions for partial access to the Shark ML containers:

  • subrange (x,i,j): This function returns a sub-vector of x with the elements xi,…, xj−1.
  • subrange (A,i,j,k,l): This function returns a sub-matrix of A with elements indicated by i,…, j−1 and k, …, l−1.
  • row (A,k): This function returns the kth row of A as a vector proxy.
  • column (A,k): This function returns the kth column of A as a vector proxy.
  • rows (A,k,l): This function returns the rows k,…,l−1 of A as a matrix proxy.
  • columns (A,k,l): This function returns the columns k,…, l−1 of A as a matrix proxy.

There is no broadcasting implementation in the Shark-ML library. Limited support of broadcasting exists only in the form of reduction functions (the set of functions that calculate one numeric value for a whole matrix or vector). There are two functions—the as_rows() and as_columns() function—that allow reduction operations to be performed independently on matrix rows or columns respectively. We can pass the result of these functions to any of the reduction functions. The following code sample shows how to perform summation reduction:

remora::matrix<float> m{{1, 2, 3, 4}, {5, 6, 7, 8}};
auto cols = remora::as_columns(m);
remora::sum(cols)

A different way to work with columns and rows independently is the use of partial access functions. The following code sample shows how to add the same vector to each of the matrix columns:

remora::vector<float> v{10, 10};
// Update matrix rows
for (size_t i = 0; i < m.size2(); ++i) {
remora::column(m, i) += v;
}

Using Dlib

Dlib is a modern C++ toolkit containing ML algorithms and tools for creating computer vision software in C++. Most of the linear algebra tools in Dlib deal with dense matrices. However, there is also limited support for working with sparse matrices and vectors. In particular, the Dlib tools represent sparse vectors using the containers from the C++ standard template library (STL).

There are two main container types in Dlib to work with linear algebra: the matrix and the vector classes. Matrix operations in Dlib are implemented using the expression templates technique, which allows them to eliminate the temporary matrix objects that would usually be returned from expressions such as M = A+B+C+D.

We can create a matrix sized at compile time in the following way, by specifying dimensions as template arguments:

Dlib::matrix<double,3,1> y;

Alternatively, we can create dynamically sized matrix objects. In such a case, we pass the matrix dimensions to the constructor, as shown in the following code snippet:

Dlib::matrix<double> m(3,3);

Later, we can change the size of this matrix, with the following method:

m.set_size(6,6);

We can initialize matrix values with a comma operator, as shown in the following code snippet:

m = 54.2,  7.4, 12.1,
1, 2, 3,
5.9, 0.05, 1;

As in the previous libraries, we can wrap an existing C++ array to the matrix object, as shown in the following code snippet:

double data[] = {1,2,3,4,5,6};
auto a = Dlib::mat(data, 2,3); // create matrix with size 2x3

Also, we can access matrix elements with the () operator to modify or get a particular value, as shown in the following code snippet:

m(1,2) = 3;

The Dlib library has a set of predefined functions to initialize a matrix with values such as identity matrix, 1s, or random values, as illustrated in the following code snippet:

auto a = Dlib::identity_matrix<double>(3);
auto b = Dlib::ones_matrix<double>(3,4);
auto c = Dlib::randm(3,4); // matrix with random values with size 3x3

Most linear algebra arithmetic operations in the Dlib library are implemented through overloads of standard C++ arithmetic operators such as +, -, *. Other complex operations are provided by the library as standalone functions.

The following example shows the use of arithmetic operations in the Dlib library:

auto c = a + b;
auto e = a * b; // real matrix multiplication
auto d = Dlib::pointwise_multiply(a, b); // element wise multiplication
a += 5;
auto t = Dlib::trans(a); // transpose matrix

To work with partial access to matrices, Dlib provides a set of special functions. The following code sample shows how to use some of them:

a = Dlib::rowm(b,0); // takes first row of matrix
a = Dlib::rowm(b,Dlib::range(0,1));//takes first two rows
a = Dlib::colm(b,0); // takes first column
a = Dlib::subm(b, range(1,2), range(1,2)); // takes a rectangular part from center
Dlib::set_subm(b,range(0,1), range(0,1)) = 7; // initialize part of the matrix
Dlib::set_subm(b,range(0,1), range(0,1)) += 7; // add a value to the part of the matrix

Broadcasting in the Dlib library can be modeled with set_rowm(), set_colm(), and set_subm() functions that give modifier objects for a particular matrix row, column, or a rectangular part of the original matrix. Objects returned from these functions support all set or arithmetic operations. The following code snippet shows how to add a vector to the columns:

Dlib::matrix<float, 2,1> x;
Dlib::matrix<float, 2,3> m;
Dlib::set_colm(b,Dlib::range(0,1)) += x;

An overview of linear regression

Consider an example of the real-world supervised ML algorithm called linear regression. In general, linear regression is an approach for modeling a target value (dependent value) based on an explanatory value (independent value). This method is used for forecasting and finding relationships between values. We can classify regression methods by the number of inputs (independent variables) and the type of relationship between the inputs and outputs (dependent variables).

Simple linear regression is the case where the number of independent variables is 1, and there is a linear relationship between the independent (x) and dependent (y) variable.

Linear regression is widely used in different areas, such as scientific research, where it can describe relationships between variables, as well as in applications within industry, such as a revenue prediction. For example, it can estimate a trend line that represents the long-term movement in the stock price time-series data. It tells whether the interest value of in a specific dataset has increased or decreased over the given period, as illustrated in the following screenshot:

If we have one input variable (independent variable) and one output variable (dependent variable) the regression is called simple, and we use the term simple linear regression for it. With multiple independent variables, we call this multiple linear regression or multivariable linear regression. Usually, when we are dealing with real-world problems, we have a lot of independent variables, so we model such problems with multiple regression models. Multiple regression models have a universal definition that covers other types, so even simple linear regression is often defined using the multiple regression definition.

Solving linear regression tasks with different libraries

Assume that we have a dataset, , so that we can express the linear relation between y and x with mathematical formula in the following way:

Here, p is the dimension of the independent variable, and T denotes the transpose, so that is the inner product between vectors and β. Also, we can rewrite the previous expression in matrix notation, as follows:

,,,

The preceding matrix notation can be explained as follows:

  • y: This is a vector of observed target values.
  • x: This is a matrix of row-vectors, , which are known as explanatory or independent values.
  • ß: This is a (p+1) dimensional parameters vector.
  • ε: This is called an error term or noise. This variable captures all other factors that influence the y dependent variable other than the regressors.

When we are considering simple linear regression, p is equal to 1, and the equation will look like this:

The goal of the linear regression task is to find parameter vectors that satisfy the previous equation. Usually, there is no exact solution to such a system of linear equations, so the task is to estimate parameters that satisfy these equations with some assumptions. One of the most popular estimation approaches is one based on the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable in the given dataset and those predicted by the linear function. This is called the ordinary least squares (OLS) estimator. So, the task can be formulated with the following formula:

In the preceding formula, the objective function S is given by the following matrix notation:

This minimization problem has a unique solution, in the case that the p columns of the x matrix are linearly independent. We can get this solution by solving the normal equation, as follows:

Linear algebra libraries can solve such equations directly with an analytical approach, but it has one significant disadvantage—computational cost. In the case of large dimensions of y and x, requirements for computer memory amount and computational time are too big to solve real-world tasks.

So, usually, this minimization task is solved with iterative approaches. Gradient descent (GD) is an example of such an algorithm. GD is a technique based on the observation that if the function is defined and is differentiable in a neighborhood of a point , then decreases fastest when it goes in the direction of the negative gradient of S at the point .

We can change our objective function to a form more suitable for an iterative approach. We can use the mean squared error (MSE) function, which measures the difference between the estimator and the estimated value, as illustrated here:

In the case of the multiple regression, we take partial derivatives for this function for each of x components, as follows:

So, in the case of the linear regression, we take the following derivatives:

The whole algorithm has the following description:

  1. Initialize β with zeros.
  2. Define a value for the learning rate parameter that controls how much we are adjusting parameters during the learning procedure.
  3. Calculate the following values of β:
  1. Repeat steps 1-3 for a number of times or until the MSE value reaches a reasonable amount.

The previously described algorithm is one of the simplest supervised ML algorithms. We described it with the linear algebra concepts we introduced earlier in the chapter. Later, it became more evident that almost all ML algorithms use linear algebra under the hood. The following samples show the higher-level API in different linear algebra libraries for solving the linear regression task, and we provide them to show how libraries can simplify the complicated math used underneath. We will give the details of the APIs used in these samples in the following chapters.

Solving linear regression tasks with Eigen

There are several iterative methods for solving problems of the form in the Eigen library. The LeastSquaresConjugateGradient class is one of them, which allows us to solve linear regression problems with the conjugate gradient algorithm. The ConjugateGradient algorithm can converge more quickly to the function's minimum than regular GD but requires that matrix A is positively defined to guarantee numerical stability. The LeastSquaresConjugateGradient class has two main settings: the maximum number of iterations and a tolerance threshold value that is used as a stopping criteria as an upper bound to the relative residual error, as illustrated in the following code block:

typedef float DType;
using Matrix = Eigen::Matrix<DType, Eigen::Dynamic, Eigen::Dynamic>;
int n = 10000;
Matrix x(n,1);
Matrix y(n,1);
Eigen::LeastSquaresConjugateGradient<Matrix> gd;
gd.setMaxIterations(1000);
gd.setTolerance(0.001) ;
gd.compute(x);
auto b = dg.solve(y);

For new x inputs, we can predict new y values with matrices operations, as follows:

Eigen::Matrixxf new_x(5, 2);
new_x << 1, 1, 1, 2, 1, 3, 1, 4, 1, 5;
auto new_y = new_x.array().rowwise() * b.transpose().array();

Also, we can calculate parameter's b vector (the linear regression task solution) by solving the normal equation directly, as follows:

auto b = (x.transpose() * x).ldlt().solve(x.transpose() * y);

Solving linear regression tasks with Shogun

Shogun is an open source ML library that provides a wide range of unified ML algorithms. The Shogun library has the CLinearRidgeRegression class for solving simple linear regression problems. This class solves problems with standard Cholesky matrix decomposition in a noniterative way, as illustrated in the following code block:

auto x = some<CDenseFeatures<float64_t>>(x_values);
auto y= some<CRegressionLabels>(y_values); // real-valued labels
float64_t tau_regularization = 0.0001;
auto lr = some<CLinearRidgeRegression>(tau_regularization, nullptr, nullptr); // regression model with regularization
lr->set_labels(y);
r->train(x)

For new x inputs, we can predict new y values in the following way:

auto new_x = some<CDenseFeatures<float64_t>>(new_x_values);
auto y_predict = lr->apply_regression(new_x);

Also, we can get the calculated parameters (the linear regression task solution) vector, as follows:

auto weights = lr->get_w();

Moreover, we can calculate the value of MSE, as follows:

auto y_predict = lr->apply_regression(x);
auto eval = some<CMeanSquaredError>();
auto mse = eval->evaluate(y_predict , y);

Solving linear regression tasks with Shark-ML

The Shark-ML library provides the LinearModel class for representing linear regression problems. There are two trainer classes for this kind of model: the LinearRegression class, which provides analytical solutions, and the LinearSAGTrainer class, which provides a stochastic average gradient iterative method, as illustrated in the following code block:

using namespace shark;
using namespace std;
Data<RealVector> x;
Data<RealVector> y;
RegressionDataset data(x, y);
LinearModel<> model;
LinearRegression trainer;
trainer.train(model, data);

We can get the calculated parameters (the linear regression task solution) vector by running the following code:

auto b = model.parameterVector();

For new x inputs, we can predict new y values in the following way:

Data<RealVector> new_x;
Data<RealVector> prediction = model(new_x);

Also, we can calculate the value of squared error, as follows:

SquaredLoss<> loss;
auto se = loss(y, prediction)

Linear regression with Dlib

The Dlib library provides the krr_trainer class, which can get the template argument of the linear_kernel type to solve linear regression tasks. This class implements direct analytical solving for this type of problem with the kernel ridge regression algorithm, as illustrated in the following code block:

std::vector<matrix<double>> x;
std::vector<float> y;
krr_trainer<KernelType> trainer;
trainer.set_kernel(KernelType());
decision_function<KernelType> df = trainer.train(x, y);

For new x inputs, we can predict new y values in the following way:

std::vector<matrix<double>> new_x;
for (auto& v : x) {
auto prediction = df(v);
std::cout << prediction << std::endl;
}

Summary

In this chapter, we learned what ML is, how it differs from other computer algorithms, and how it became so popular. We also became familiar with the necessary mathematical background required to begin to work with ML algorithms. We looked at software libraries that provide APIs for linear algebra, and also implemented our first ML algorithm—linear regression.

There are other linear algebra libraries for C++. Moreover, the popular deep learning frameworks use their own implementations of linear algebra libraries. For example, the MXNet framework is based on the mshadow library, and the PyTorch framework is based on the ATen library. Some of these libraries can use GPU or special CPU instructions for speeding up calculations. Such features do not usually change the API but require some additional library initialization settings or explicit object conversion to different backends such as CPUs or GPUs.

In the next two chapters, we will learn more about available software tools that are necessary to implement more complicated algorithms, and we will also learn more theoretical background on how to manage ML algorithms.

Further reading

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Become familiar with data processing, performance measuring, and model selection using various C++ libraries
  • Implement practical machine learning and deep learning techniques to build smart models
  • Deploy machine learning models to work on mobile and embedded devices

Description

C++ can make your machine learning models run faster and more efficiently. This handy guide will help you learn the fundamentals of machine learning (ML), showing you how to use C++ libraries to get the most out of your data. This book makes machine learning with C++ for beginners easy with its example-based approach, demonstrating how to implement supervised and unsupervised ML algorithms through real-world examples. This book will get you hands-on with tuning and optimizing a model for different use cases, assisting you with model selection and the measurement of performance. You’ll cover techniques such as product recommendations, ensemble learning, and anomaly detection using modern C++ libraries such as PyTorch C++ API, Caffe2, Shogun, Shark-ML, mlpack, and dlib. Next, you’ll explore neural networks and deep learning using examples such as image classification and sentiment analysis, which will help you solve various problems. Later, you’ll learn how to handle production and deployment challenges on mobile and cloud platforms, before discovering how to export and import models using the ONNX format. By the end of this C++ book, you will have real-world machine learning and C++ knowledge, as well as the skills to use C++ to build powerful ML systems.

Who is this book for?

You will find this C++ machine learning book useful if you want to get started with machine learning algorithms and techniques using the popular C++ language. As well as being a useful first course in machine learning with C++, this book will also appeal to data analysts, data scientists, and machine learning developers who are looking to implement different machine learning models in production using varied datasets and examples. Working knowledge of the C++ programming language is mandatory to get started with this book.

What you will learn

  • Explore how to load and preprocess various data types to suitable C++ data structures
  • Employ key machine learning algorithms with various C++ libraries
  • Understand the grid-search approach to find the best parameters for a machine learning model
  • Implement an algorithm for filtering anomalies in user data using Gaussian distribution
  • Improve collaborative filtering to deal with dynamic user preferences
  • Use C++ libraries and APIs to manage model structures and parameters
  • Implement a C++ program to solve image classification tasks with LeNet architecture

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : May 15, 2020
Length: 530 pages
Edition : 1st
Language : English
ISBN-13 : 9781789955330
Category :
Languages :
Concepts :
Tools :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : May 15, 2020
Length: 530 pages
Edition : 1st
Language : English
ISBN-13 : 9781789955330
Category :
Languages :
Concepts :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 193.97
Modern C++ Programming Cookbook
$94.99
Hands-On Machine Learning with C++
$54.99
Expert C++
$43.99
Total $ 193.97 Stars icon
Banner background image

Table of Contents

18 Chapters
Section 1: Overview of Machine Learning Chevron down icon Chevron up icon
Introduction to Machine Learning with C++ Chevron down icon Chevron up icon
Data Processing Chevron down icon Chevron up icon
Measuring Performance and Selecting Models Chevron down icon Chevron up icon
Section 2: Machine Learning Algorithms Chevron down icon Chevron up icon
Clustering Chevron down icon Chevron up icon
Anomaly Detection Chevron down icon Chevron up icon
Dimensionality Reduction Chevron down icon Chevron up icon
Classification Chevron down icon Chevron up icon
Recommender Systems Chevron down icon Chevron up icon
Ensemble Learning Chevron down icon Chevron up icon
Section 3: Advanced Examples Chevron down icon Chevron up icon
Neural Networks for Image Classification Chevron down icon Chevron up icon
Sentiment Analysis with Recurrent Neural Networks Chevron down icon Chevron up icon
Section 4: Production and Deployment Challenges Chevron down icon Chevron up icon
Exporting and Importing Models Chevron down icon Chevron up icon
Deploying Models on Mobile and Cloud Platforms Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Half star icon Empty star icon 3.8
(6 Ratings)
5 star 66.7%
4 star 0%
3 star 0%
2 star 16.7%
1 star 16.7%
Filter icon Filter
Top Reviews

Filter reviews by




Karl Mueller Feb 15, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
While not a huge problem this book really needs the supplied Docker environment for the examples to work properly.I initially tried to set up the environment myself in my base Linux installation and found that some of the tools used in the book are difficult to find, difficult to compile, etc.Previously I knew nothing about Docker, but it wasn't difficult to learn and it is a useful system to know.It does raise the question about how useful some of the tools can be if they can only ever exist properly in the Docker environment provided with the book. Apart from that I found the book very useful for moving my ML knowledge developed in MATLAB, across to C++ which is the main language I use for development.
Amazon Verified review Amazon
Kindle Customer Dec 24, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
While Python normally does the job just fine when it comes to handling ML and more general analytics tasks, I have wanted for a long time to work on these kinds of problems using C++. Unfortunately, it has been very difficult to get started because of a severe lack of educational resources out there. Luckily, this book has finally filled that gap for me.What I really like about the book is that the author has put together a series of very complete examples for each method being discussed. Every program reads in an actual csv file with the data (as opposed to using some form of random number generation to create a toy example), puts it into the right format to be used with the given implementation of an ML method and then puts together a data set that one can use as output. As someone who has not had much experience with C++ outside a classroom setting, I found this extremely helpful, and it has made the material immediately applicable to my work in real life.The book covers just the right amount of theory in each chapter as well before diving into the C++ implementation, making the material accessible to developers who are relatively new to data science (which, as I understand, is actually the main target audience).
Amazon Verified review Amazon
Robin T. Wernick Feb 08, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Python has hijacked the Machine Learning territory over the last few years since 2014. This leaves the 'C' languages without a comparable foothold in this arena until this book was published. This book covers the gaping void between the 'C' language trained programmers and the Python Machine Language world. It has the same mathematical introduction theory, but counters with a set of code libraries that work with C++.This book will allow the C++ programmer to expand his programming scope without having to rewrite his entire code base in Python and learn a whole new programming language. Not only will it save enormous amounts of time, but it will also provide and give usage detail for a compatible PyTorch Deep Learning library for C++code use. Now the high performance world of GPU programming is available with a tensor interface to C++ programmers.
Amazon Verified review Amazon
Matthew Emerick Jun 15, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Disclaimer: The publisher asked me to review this book and gave me a review copy. I promise to be 100% honest in how I feel about this book, both the good and the less so.Personal Background: My first programming language after I started university was C++, followed by C. I'm glad to see that C++ can be used for ML problems, though I do understand that Python can be the easier choice. I try to keep in mind, however, that most if not all Python ML libraries are written in C/C++ to make it run faster.OverviewTo get the most out of this book, I would recommend that you have at least an intermediate competency of C++ and some basic knowledge of machine learning. The former is far more valuable than the later, in this case, as the author assumes that you know C++. There is no hand holding with the code. However, the author does walk you through ML from the basics to a moderate level.What I Like:This book is broken into four overall sections: Overview of Machine Learning, Machine Learning Algorithms, Advanced Examples, and Production and Deployment Challenges. This is an excellent selection of sections that make the overall book better organized. The first section gives a good overview of machine learning (as the title indicates), including a basic understanding of the math involved, data preproccessing, and general rundown of the considerations for choosing which ML technique you should use.The second section gives all the major ML algorithms that a junior ML developer will need. The book focuses on supervised and unsupervised ML, which is most of what you'll see in a business setting. This section finishes with a chapter on Ensemble Learning, where you use multiple ML algorithms to give you better results. The advanced examples mix and match some other algorithms to give you a basic understanding and a starting point for learning more. The final section looks at model deployment and mobile and cloud considerations. If you're new to machine learning and wish to use C++, this is a book book for it. Especially valuable are the Further Reading sections at the end of every chapter.What I Don't Like:When looking at the code, it was very different from the C++ code I learn nearly two decades ago. With the use of C++17, I faced a steep learning curve to use the code examples. While not a concern in and of itself, the first reference to C++17 I could find is on page 41. As someone who knows and enjoys an older version, this made using the code examples more difficult to me. I understand and agree with using a more recent version of the language, but would have appreciated a warning on the back cover or at least in the preface so that I could do some review first. A book recommendation for learning this version of C++ would have be appreciated as well.In the first chapter, the author divides machine learning up into two categories: supervised and unsupervised learning. While technically correct, there is a third category that doesn't fit well into either one: reinforcement learning. I wouldn't expect the author to delve into that niche sub field, it still should have been mentioned.What I Would Like to See:I really enjoyed this book. It has much to offer anyone with C++ experience. It is well organized and has much useful information. I am very happy to have it as part of my library. I think that a book from this author about C++ ML from Scratch would be interesting.Overall, I give this book a 4.9 out of 5. It's an excellent resource.
Amazon Verified review Amazon
George Ford Feb 12, 2023
Full star icon Full star icon Empty star icon Empty star icon Empty star icon 2
I originally bought this book with the hopes of being able to get a better grasp on machine learning with c++, since the back cover states: "This book makes machine learning with C++ for beginners easy with its example based approach". It starts off reviewing some of the basics of linear algebra... OK. But then in the next chapter, in an attempt to get you familiar with all of the different libraries, you begin loading data using API's without any background to what those API's do and then how you would use that data.The author tries to familiarize you with a bunch of different libraries, without truly ever really describing the details of any of them. The author will write code to accomplish a task with a given library, and then repeat the same with another library. But, in my opinion, this is done without much insight as to why you are doing what you are doing. Just copying code.The background info on neural networks, although helpful, does not really explain fully how they work, outside of providing the differential equations that are implemented.It is a really tough read to go from cover to cover, and I don't feel like you really grasp much, since too much is trying to be explained with a bunch of tools, but no focus on any given tool.I think it would be much better if someone were to focus on one or two tools (xtensor, libtorch, dlib, etc) and approach the subject in that manner. This way, you are familiarizing yourself with the subject as well as the library you are using
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.