Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Getting Started with Haskell Data Analysis

You're reading from   Getting Started with Haskell Data Analysis Put your data analysis techniques to work and generate publication-ready visualizations

Arrow left icon
Product type Paperback
Published in Oct 2018
Publisher Packt
ISBN-13 9781789802863
Length 160 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
James Church James Church
Author Profile Icon James Church
James Church
Arrow right icon
View More author details
Toc

The central limit theorem

In this section, we'll be discussing the central limit theorem, which is essential to our understanding of normal distribution. Normal distribution is an important formula for the study of even basic statistics in data science. Data science, at its heart, is mathematical. We're transitioning away from the technical aspects of Haskell and file formats. First let's look at the central limit theorem before we introduce normal distribution, and then we're going to be exploring the parameters of normal distribution. So, here is the definition of the central limit theorem as per Wikipedia:

The central limit theorem (CLT) states that, given certain conditions, the arithmetic mean of a sufficiently large number of iterates of independent random variables, each with a well-defined (finite) expected value and finite variance, will be approximately...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime