Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Effective Amazon Machine Learning

You're reading from   Effective Amazon Machine Learning Expert web services for machine learning on cloud

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher Packt
ISBN-13 9781785883231
Length 306 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Alexis Perrier Alexis Perrier
Author Profile Icon Alexis Perrier
Alexis Perrier
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Introduction to Machine Learning and Predictive Analytics FREE CHAPTER 2. Machine Learning Definitions and Concepts 3. Overview of an Amazon Machine Learning Workflow 4. Loading and Preparing the Dataset 5. Model Creation 6. Predictions and Performances 7. Command Line and SDK 8. Creating Datasources from Redshift 9. Building a Streaming Data Analysis Pipeline

Dealing with messy data


As the dataset grows, so do inconsistencies and errors. Whether as a result of human error, system failure, or data structure evolutions, real-world data is rife with invalid, absurd, or missing values. Even when the dataset is spotless, the nature of some variables need to be adapted to the model. We look at the most common data anomalies and characteristics that need to be corrected in the context of Amazon ML linear models.

Classic datasets versus real-world datasets

Data scientists and machine-learning practitioners often use classic datasets to demonstrate the behavior of certain models. The Iris dataset, composed of 150 samples of three types of iris flowers, is one of the most commonly used to demonstrate or to teach predictive analytics. It has been around since 1936!

The Boston housing dataset and the Titanic dataset are other very popular datasets for predictive analytics. For text classification, the Reuters or the 20 newsgroups text datasets are very common...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime