Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning By Example

You're reading from   Deep Learning By Example A hands-on guide to implementing advanced machine learning algorithms and neural networks

Arrow left icon
Product type Paperback
Published in Feb 2018
Publisher Packt
ISBN-13 9781788399906
Length 450 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ahmed Menshawy Ahmed Menshawy
Author Profile Icon Ahmed Menshawy
Ahmed Menshawy
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Data Science - A Birds' Eye View FREE CHAPTER 2. Data Modeling in Action - The Titanic Example 3. Feature Engineering and Model Complexity – The Titanic Example Revisited 4. Get Up and Running with TensorFlow 5. TensorFlow in Action - Some Basic Examples 6. Deep Feed-forward Neural Networks - Implementing Digit Classification 7. Introduction to Convolutional Neural Networks 8. Object Detection – CIFAR-10 Example 9. Object Detection – Transfer Learning with CNNs 10. Recurrent-Type Neural Networks - Language Modeling 11. Representation Learning - Implementing Word Embeddings 12. Neural Sentiment Analysis 13. Autoencoders – Feature Extraction and Denoising 14. Generative Adversarial Networks 15. Face Generation and Handling Missing Labels 16. Implementing Fish Recognition 17. Other Books You May Enjoy

Simple implementation of GANs

From the story of faking a ticket to an event, the idea of GANs seems to be very intuitive. So to get a clear understanding of how GANs work and how to implement them, we are going to demonstrate a simple implementation of a GAN on the MNIST dataset.

First, we need to build the core of the GAN network, which is comprised of two major components: the generator and the discriminator. As we said, the generator will try to imagine or fake data samples from a specific probability distribution; the discriminator, which has access to and sees the actual data samples, will judge whether the generator's output has any flaws in the design or it's very close to the original data samples. Similar to the scenario of the event, the whole purpose of the generator is to try to convince the discriminator that the generated image is from the real dataset...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image