Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Data Engineering with Python

You're reading from   Data Engineering with Python Work with massive datasets to design data models and automate data pipelines using Python

Arrow left icon
Product type Paperback
Published in Oct 2020
Publisher Packt
ISBN-13 9781839214189
Length 356 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Paul Crickard Paul Crickard
Author Profile Icon Paul Crickard
Paul Crickard
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Section 1: Building Data Pipelines – Extract Transform, and Load
2. Chapter 1: What is Data Engineering? FREE CHAPTER 3. Chapter 2: Building Our Data Engineering Infrastructure 4. Chapter 3: Reading and Writing Files 5. Chapter 4: Working with Databases 6. Chapter 5: Cleaning, Transforming, and Enriching Data 7. Chapter 6: Building a 311 Data Pipeline 8. Section 2:Deploying Data Pipelines in Production
9. Chapter 7: Features of a Production Pipeline 10. Chapter 8: Version Control with the NiFi Registry 11. Chapter 9: Monitoring Data Pipelines 12. Chapter 10: Deploying Data Pipelines 13. Chapter 11: Building a Production Data Pipeline 14. Section 3:Beyond Batch – Building Real-Time Data Pipelines
15. Chapter 12: Building a Kafka Cluster 16. Chapter 13: Streaming Data with Apache Kafka 17. Chapter 14: Data Processing with Apache Spark 18. Chapter 15: Real-Time Edge Data with MiNiFi, Kafka, and Spark 19. Other Books You May Enjoy Appendix

Installing and running Spark

Apache Spark is a distributed data processing engine that can handle both streams and batch data, and even graphs. It has a core set of components and other libraries that are used to add functionality. A common depiction of the Spark ecosystem is shown in the following diagram:

Figure 14.1 – The Apache Spark ecosystem

To run Spark as a cluster, you have several options. Spark can run in a standalone mode, which uses a simple cluster manager provided by Spark. It can also run on an Amazon EC2 instance, using YARN, Mesos, or Kubernetes. In a production environment with a significant workload, you would probably not want to run in standalone mode; however, this is how we will stand up our cluster in this chapter. The principles will be the same, but the standalone cluster provides the fastest way to get you up and running without needing to dive into more complicated infrastructure.

To install Apache Spark, take the following...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime