Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Bayesian Analysis with Python

You're reading from   Bayesian Analysis with Python Unleash the power and flexibility of the Bayesian framework

Arrow left icon
Product type Paperback
Published in Nov 2016
Publisher Packt
ISBN-13 9781785883804
Length 282 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Osvaldo Martin Osvaldo Martin
Author Profile Icon Osvaldo Martin
Osvaldo Martin
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Thinking Probabilistically - A Bayesian Inference Primer FREE CHAPTER 2. Programming Probabilistically – A PyMC3 Primer 3. Juggling with Multi-Parametric and Hierarchical Models 4. Understanding and Predicting Data with Linear Regression Models 5. Classifying Outcomes with Logistic Regression 6. Model Comparison 7. Mixture Models 8. Gaussian Processes Index

Preface

Bayesian statistics has been around for more than 250 years now. During this time it has enjoyed as much recognition and appreciation as disdain and contempt. Through the last few decades it has gained more and more attention from people in statistics and almost all other sciences, engineering, and even outside the walls of the academic world. This revival has been possible due to theoretical and computational developments. Modern Bayesian statistics is mostly computational statistics. The necessity for flexible and transparent models and a more interpretation of statistical analysis has only contributed to the trend.

Here, we will adopt a pragmatic approach to Bayesian statistics and we will not care too much about other statistical paradigms and their relationship to Bayesian statistics. The aim of this book is to learn about Bayesian data analysis with the help of Python. Philosophical discussions are interesting but they have already been undertaken elsewhere in a richer way than we can discuss in these pages.

We will take a modeling approach to statistics, we will learn to think in terms of probabilistic models, and apply Bayes' theorem to derive the logical consequences of our models and data. The approach will also be computational; models will be coded using PyMC3—a great library for Bayesian statistics that hides most of the mathematical details and computations from the user. Bayesian methods are theoretically grounded in probability theory and hence it's no wonder that many books about Bayesian statistics are full of mathematical formulas requiring a certain level of mathematical sophistication. Learning the mathematical foundations of statistics could certainly help you build better models and gain intuition about problems, models, and results. Nevertheless, libraries, such as PyMC3 allow us to learn and do Bayesian statistics with only a modest mathematical knowledge, as you will be able to verify by yourself throughout this book.

lock icon The rest of the chapter is locked
Next Section arrow right
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image