Alpha-Beta pruning
Minimax search is an efficient strategy, but it still ends up exploring parts of the tree that are irrelevant. Let's consider a tree where we are supposed to search for solutions. Once we find an indicator on a node that tells us that the solution does not exist in that sub-tree, there is no need to evaluate that sub-tree. But Minimax search is a bit too conservative, so it ends up exploring that sub-tree.
We need to be smart about it and avoid searching a part of a tree that is not necessary. This process is called pruning and Alpha-Beta pruning is a type of avoidance strategy that is used to avoid searching parts of the tree that do not contain the solution.
The Alpha and Beta parameters in alpha-beta pruning refer to the two bounds that are used during the calculation. These parameters refer to the values that restrict the set of possible solutions. This is based on the section of the tree that has already been explored. Alpha is the maximum lower bound of the number...