What are Convolutional Neural Networks?
We saw how neural networks work in the last two chapters. Neural networks consist of neurons that have weights and biases. These weights and biases are tuned during the training process to come up with a good learning model. Each neuron receives a set of inputs, processes it in some way, and then outputs a value. If we build a neural network with many layers, it's called a deep neural network. The branch of Artificial Intelligence dealing with these deep neural networks is referred to as deep learning.
One of the main disadvantages of ordinary neural networks is that they ignore the structure of input data. All data is converted to a single dimensional array before feeding it into the network. This works well for regular data, but things get difficult when we deal with images.
Let's consider grayscale images. These images are 2D structures and we know that the spatial arrangement of pixels has a lot of hidden information. If we ignore this...