In this section, we will apply bitwise_and and multiply all the bits in the black region of the image by 0000 and the white region by 1111, as shown in the following screenshot:
Fig 5.7: bitwise_and used on the black and white images
The bitwise_and conversion is as follows:
Fig 5.8: The bitwise_and conversion
Now, we will implement bitwise_and using OpenCV:
- First, import the required libraries:
In[1]: import cv2
In[2]: import numpy as np
In[3]: import matplotlib.pyplot as plt
- Then, write a canny edge detection function:
In[4]: def canny_edge(image):
gray_conversion= cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
blur_conversion = cv2.GaussianBlur(gray_conversion, (5,5),0)
canny_conversion = cv2.Canny(blur_conversion, 50,150)
return canny_conversion
- Modify the region-of-interest masking function by adding bitwise_and:
In[5]: def reg_of_interest(image):
image_height = image.shape[0]
polygons...