Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Time Series Analysis with Python Cookbook

You're reading from   Time Series Analysis with Python Cookbook Practical recipes for exploratory data analysis, data preparation, forecasting, and model evaluation

Arrow left icon
Product type Paperback
Published in Jun 2022
Publisher Packt
ISBN-13 9781801075541
Length 630 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Tarek A. Atwan Tarek A. Atwan
Author Profile Icon Tarek A. Atwan
Tarek A. Atwan
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Chapter 1: Getting Started with Time Series Analysis 2. Chapter 2: Reading Time Series Data from Files FREE CHAPTER 3. Chapter 3: Reading Time Series Data from Databases 4. Chapter 4: Persisting Time Series Data to Files 5. Chapter 5: Persisting Time Series Data to Databases 6. Chapter 6: Working with Date and Time in Python 7. Chapter 7: Handling Missing Data 8. Chapter 8: Outlier Detection Using Statistical Methods 9. Chapter 9: Exploratory Data Analysis and Diagnosis 10. Chapter 10: Building Univariate Time Series Models Using Statistical Methods 11. Chapter 11: Additional Statistical Modeling Techniques for Time Series 12. Chapter 12: Forecasting Using Supervised Machine Learning 13. Chapter 13: Deep Learning for Time Series Forecasting 14. Chapter 14: Outlier Detection Using Unsupervised Machine Learning 15. Chapter 15: Advanced Techniques for Complex Time Series 16. Index 17. Other Books You May Enjoy

Resampling time series data

A typical transformation that is done on time series data is resampling. The process implies changing the frequency or level of granularity of the data.

Usually, you will have limited control over how the time series is generated in terms of frequency. For example, the data can be generated and stored in small intervals, such as milliseconds, minutes, or hours. In some cases, the data can be in larger intervals, such as daily, weekly, or monthly.

The need for resampling time series can be driven by the nature of your analysis and at what granular level you need your data to be. For instance, you can have daily data, but your analysis requires the data to be weekly, and thus you will need to resample. This process is known as downsampling. When you are downsampling, you will need to provide some level of aggregation, such as mean, sum, min, or max, to name a few. On the other hand, some situations require you to resample your data from daily to hourly...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image