Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Supervised Learning Workshop

You're reading from   The Supervised Learning Workshop Predict outcomes from data by building your own powerful predictive models with machine learning in Python

Arrow left icon
Product type Paperback
Published in Feb 2020
Publisher Packt
ISBN-13 9781800209046
Length 532 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (4):
Arrow left icon
Blaine Bateman Blaine Bateman
Author Profile Icon Blaine Bateman
Blaine Bateman
Ashish Ranjan Jha Ashish Ranjan Jha
Author Profile Icon Ashish Ranjan Jha
Ashish Ranjan Jha
Ishita Mathur Ishita Mathur
Author Profile Icon Ishita Mathur
Ishita Mathur
Benjamin Johnston Benjamin Johnston
Author Profile Icon Benjamin Johnston
Benjamin Johnston
Arrow right icon
View More author details
Toc

Bagging

The term bagging is derived from a technique called bootstrap aggregation. In order to implement a successful predictive model, it's important to know in what situation we could benefit from using bootstrapping methods to build ensemble models. Such models are used extensively both in industry as well as academia.

One such application would be that these models can be used for the quality assessment of Wikipedia articles. Features such as article_length, number_of_references, number_of_headings, and number_of_images are used to build a classifier that classifies Wikipedia articles into low- or high-quality articles. Out of the several models that were tried for this task, the random forest model – a well-known bagging-based ensemble classifier that we will discuss in our next section – outperforms all other models such as SVM, logistic regression, and even neural networks, with the best precision and recall scores of 87.3% and 87.2%, respectively. This...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image