Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
The Reinforcement Learning Workshop

You're reading from   The Reinforcement Learning Workshop Learn how to apply cutting-edge reinforcement learning algorithms to a wide range of control problems

Arrow left icon
Product type Paperback
Published in Aug 2020
Publisher Packt
ISBN-13 9781800200456
Length 822 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (9):
Arrow left icon
Dr. Alexandra Galina Petre Dr. Alexandra Galina Petre
Author Profile Icon Dr. Alexandra Galina Petre
Dr. Alexandra Galina Petre
Anand N.S. Anand N.S.
Author Profile Icon Anand N.S.
Anand N.S.
Quan Nguyen Quan Nguyen
Author Profile Icon Quan Nguyen
Quan Nguyen
Anthony So Anthony So
Author Profile Icon Anthony So
Anthony So
Mayur Kulkarni Mayur Kulkarni
Author Profile Icon Mayur Kulkarni
Mayur Kulkarni
Aritra Sen Aritra Sen
Author Profile Icon Aritra Sen
Aritra Sen
Alessandro Palmas Alessandro Palmas
Author Profile Icon Alessandro Palmas
Alessandro Palmas
Emanuele Ghelfi Emanuele Ghelfi
Author Profile Icon Emanuele Ghelfi
Emanuele Ghelfi
Saikat Basak Saikat Basak
Author Profile Icon Saikat Basak
Saikat Basak
+5 more Show less
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface
1. Introduction to Reinforcement Learning 2. Markov Decision Processes and Bellman Equations FREE CHAPTER 3. Deep Learning in Practice with TensorFlow 2 4. Getting Started with OpenAI and TensorFlow for Reinforcement Learning 5. Dynamic Programming 6. Monte Carlo Methods 7. Temporal Difference Learning 8. The Multi-Armed Bandit Problem 9. What Is Deep Q-Learning? 10. Playing an Atari Game with Deep Recurrent Q-Networks 11. Policy-Based Methods for Reinforcement Learning 12. Evolutionary Strategies for RL Appendix

The Action-Value Function (Q Value Function)

In the previous sections, we learned about the state-value function, which tells us how rewarding it is to be in a particular state for an agent. Now we will learn about another function where we can combine the state with actions. The action-value function will tell us how good it is for the agent to take any given action from a given state. We also call the action value the Q value. The equation can be written as follows:

Figure 9.13: Expression for the Q value function

The preceding equation can be written in an iterative fashion, as follows:

Figure 9.14: Expression for the Q value function with iterations

This equation is also known as the bellman equation. From the equation, we can express c. A Bellman equation can be described as follows:

"The total expected reward being in state s and taking action a is the sum of two components: the reward (which is r) that we can...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image