Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Solutions Architect's Handbook

You're reading from   Solutions Architect's Handbook Kick-start your career as a solutions architect by learning architecture design principles and strategies

Arrow left icon
Product type Paperback
Published in Jan 2022
Publisher Packt
ISBN-13 9781801816618
Length 590 pages
Edition 2nd Edition
Arrow right icon
Authors (2):
Arrow left icon
Saurabh Shrivastava Saurabh Shrivastava
Author Profile Icon Saurabh Shrivastava
Saurabh Shrivastava
Neelanjali Srivastav Neelanjali Srivastav
Author Profile Icon Neelanjali Srivastav
Neelanjali Srivastav
Arrow right icon
View More author details
Toc

Table of Contents (22) Chapters Close

Preface 1. The Meaning of Solution Architecture 2. Solution Architects in an Organization FREE CHAPTER 3. Attributes of the Solution Architecture 4. Principles of Solution Architecture Design 5. Cloud Migration and Hybrid Cloud Architecture Design 6. Solution Architecture Design Patterns 7. Performance Considerations 8. Security Considerations 9. Architectural Reliability Considerations 10. Operational Excellence Considerations 11. Cost Considerations 12. DevOps and Solution Architecture Framework 13. Data Engineering for Solution Architecture 14. Machine Learning Architecture 15. The Internet of Things Architecture 16. Quantum Computing 17. Rearchitecting Legacy Systems 18. Solution Architecture Document 19. Learning Soft Skills to Become a Better Solution Architect 20. Other Books You May Enjoy
21. Index

Deep learning

ML is not just about forecasting numbers but also solving complex problems using neural language processing. These use cases include complex scenarios processed by the human brain, such as building an automated chatbot impersonating humans, reading handwritten text, image recognition, transcribing videos/audios, and converting text to audio and vice versa. Deep learning has the ability to solve such use cases by mimicking the human brain.

While ML needs a pre-defined set of labeled data using supervised learning, deep learning uses a neural network for unsupervised learning to simulate human brain behaviors by using a large amount of data to develop learning capabilities for machines. Deep learning is a neural network of multiple layers where you don't need to do data labeling upfront. However, you can use both labeled data and unlabeled data with deep learning, depending upon your use case. The following diagram shows a simple deep learning model:

...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime