So far, we have focused on models and techniques that broadly fall under the category of supervised learning. Supervised learning is supervised because the task is for the machine to learn the relationship between a set of variables or features and one or more outcomes. For example, in Chapter 4, Training Deep Prediction Models, we wanted to predict whether someone would visit a store in the next 14 days. In this chapter, we will delve into methods of unsupervised learning. In contrast with supervised learning, where there is an outcome variable(s) or labeled data is being used, unsupervised learning does not use any outcomes or labeled data. Unsupervised learning uses only input features for learning. A common example of unsupervised learning is cluster analysis, such as k-means clustering, where the machine learns hidden or latent clusters in the...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine