Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Data Science Essentials

You're reading from   Python Data Science Essentials A practitioner's guide covering essential data science principles, tools, and techniques

Arrow left icon
Product type Paperback
Published in Sep 2018
Publisher Packt
ISBN-13 9781789537864
Length 472 pages
Edition 3rd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Luca Massaron Luca Massaron
Author Profile Icon Luca Massaron
Luca Massaron
Alberto Boschetti Alberto Boschetti
Author Profile Icon Alberto Boschetti
Alberto Boschetti
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. First Steps FREE CHAPTER 2. Data Munging 3. The Data Pipeline 4. Machine Learning 5. Visualization, Insights, and Results 6. Social Network Analysis 7. Deep Learning Beyond the Basics 8. Spark for Big Data 9. Strengthen Your Python Foundations 10. Other Books You May Enjoy

Machine Learning

Having illustrated all the data preparation steps in a data science project, we have finally arrived at the learning phase, where learning algorithms are applied. To introduce you to the most effective machine learning tools that are readily available in scikit-learn and in other Python packages, we have prepared a brief introduction to all the major families of algorithms. We completed it with examples and tips on the hyper-parameters that guarantee the best possible results.

In this chapter, we will present the following topics:

  • Linear and logistic regression
  • Naive Bayes
  • K-Nearest Neighbors (k-NN)
  • Support Vector Machines (SVM)
  • Ensemble solutions
  • Bagged and boosted classifiers
  • Stochastic gradient-based classification and regression for big data
  • Unsupervised clustering with K-means and DBSCAN

Neural networks and deep learning, instead, will be dealt with in...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image