Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Data Analysis

You're reading from   Python Data Analysis Learn how to apply powerful data analysis techniques with popular open source Python modules

Arrow left icon
Product type Paperback
Published in Oct 2014
Publisher
ISBN-13 9781783553358
Length 348 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Getting Started with Python Libraries FREE CHAPTER 2. NumPy Arrays 3. Statistics and Linear Algebra 4. pandas Primer 5. Retrieving, Processing, and Storing Data 6. Data Visualization 7. Signal Processing and Time Series 8. Working with Databases 9. Analyzing Textual Data and Social Media 10. Predictive Analytics and Machine Learning 11. Environments Outside the Python Ecosystem and Cloud Computing 12. Performance Tuning, Profiling, and Concurrency A. Key Concepts
B. Useful Functions C. Online Resources
Index

Summary

This was a chapter about textual analysis. We learned that it's a best practice in text analysis to get rid of stopwords.

In the bag-of-words model, we created from a document a bag containing words found in the document. Using all the word counts, we can build a feature vector for each document.

Classification algorithms are a type of machine learning algorithm, which involve determining the class of a given item. Naive Bayes classification is a probabilistic algorithm based on the Bayes theorem from probability theory and statistics. The Bayes theorem states that the posterior probability is proportional to the prior probability multiplied by the likelihood.

The next chapter will describe machine learning in more detail. Machine learning is a research field that shows a lot of promise. One day, it may even replace human labor completely. We will explore what we can do with scikit-learn, the Python machine learning package, using weather data as an example.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime