Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Data Analysis

You're reading from   Python Data Analysis Learn how to apply powerful data analysis techniques with popular open source Python modules

Arrow left icon
Product type Paperback
Published in Oct 2014
Publisher
ISBN-13 9781783553358
Length 348 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Getting Started with Python Libraries FREE CHAPTER 2. NumPy Arrays 3. Statistics and Linear Algebra 4. pandas Primer 5. Retrieving, Processing, and Storing Data 6. Data Visualization 7. Signal Processing and Time Series 8. Working with Databases 9. Analyzing Textual Data and Social Media 10. Predictive Analytics and Machine Learning 11. Environments Outside the Python Ecosystem and Cloud Computing 12. Performance Tuning, Profiling, and Concurrency A. Key Concepts
B. Useful Functions C. Online Resources
Index

Basic descriptive statistics with NumPy

In this book, we will try to use as many varied datasets as possible. This depends on the availability of the data. Unfortunately, this means that the subject of the data might not exactly match your interests. Every dataset has its own quirks, but the general skills you acquire in this book should transfer to your own field. In this chapter, we will load a number of Comma-separated Value (CSV) files into NumPy arrays in order to analyze the data.

To load the data, we will use the NumPy loadtxt() function as follows:

Note

The code for this example can be found in basic_stats.py in the code bundle.

import numpy as np
from scipy.stats import scoreatpercentile

data = np.loadtxt("mdrtb_2012.csv", delimiter=',', usecols=(1,), skiprows=1, unpack=True)

print "Max method", data.max()
print "Max function", np.max(data)

print "Min method", data.min()
print "Min function", np.min(data)

print "Mean...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime