Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python Architecture Patterns

You're reading from   Python Architecture Patterns Master API design, event-driven structures, and package management in Python

Arrow left icon
Product type Paperback
Published in Jan 2022
Publisher Packt
ISBN-13 9781801819992
Length 594 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Jaime Buelta Jaime Buelta
Author Profile Icon Jaime Buelta
Jaime Buelta
Arrow right icon
View More author details
Toc

Table of Contents (23) Chapters Close

Preface 1. Introduction to Software Architecture FREE CHAPTER 2. Part I: Design
3. API Design 4. Data Modeling 5. The Data Layer 6. Part II: Architectural Patterns
7. The Twelve-Factor App Methodology 8. Web Server Structures 9. Event-Driven Structures 10. Advanced Event-Driven Structures 11. Microservices vs Monolith 12. Part III: Implementation
13. Testing and TDD 14. Package Management 15. Part IV: Ongoing operations
16. Logging 17. Metrics 18. Profiling 19. Debugging 20. Ongoing Architecture 21. Other Books You May Enjoy
22. Index

Metrics versus logs

As we saw in the previous chapter, logs are text messages produced as code is executed. They are good at giving visibility on each of the specific tasks that the system is performing, but they generate a huge amount of data, which is difficult to digest in bulk. Instead, only small groups of logs are able to be analyzed at any given time.

Normally, the logs analyzed will all be related to a single task. We saw in the previous chapter how to use a request ID for that. But on certain occasions, it may be necessary to check all logs happening in a particular time window to see crossing effects, like a problem in one server that affects all tasks during certain times.

But sometimes the important information is not a specific request, but to understand the behavior of the system as a whole. Is the load of the system growing compared to yesterday's? How many errors are we returning? Is the time it takes to process tasks increasing? Or decreasing...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image