Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
OpenStack Cloud Computing Cookbook
OpenStack Cloud Computing Cookbook

OpenStack Cloud Computing Cookbook: Over 100 practical recipes to help you build and operate OpenStack cloud computing, storage, networking, and automation , Fourth Edition

Arrow left icon
Profile Icon Kevin Jackson Profile Icon Cody Bunch Profile Icon Egle Sigler Profile Icon James Denton
Arrow right icon
€28.99 €32.99
Full star icon Full star icon Full star icon Full star icon Half star icon 4.3 (10 Ratings)
eBook Jan 2018 398 pages 4th Edition
eBook
€28.99 €32.99
Paperback
€41.99
Subscription
Free Trial
Renews at €18.99p/m
Arrow left icon
Profile Icon Kevin Jackson Profile Icon Cody Bunch Profile Icon Egle Sigler Profile Icon James Denton
Arrow right icon
€28.99 €32.99
Full star icon Full star icon Full star icon Full star icon Half star icon 4.3 (10 Ratings)
eBook Jan 2018 398 pages 4th Edition
eBook
€28.99 €32.99
Paperback
€41.99
Subscription
Free Trial
Renews at €18.99p/m
eBook
€28.99 €32.99
Paperback
€41.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

OpenStack Cloud Computing Cookbook

Chapter 1. Installing OpenStack with Ansible

In this chapter, we will cover the following topics:

  • Introduction – the OpenStack architecture

  • Host network configuration

  • Root SSH keys configuration

  • Installing Ansible, playbooks, and dependencies

  • Configuring the installation

  • Running the OpenStack-Ansible playbooks

  • Troubleshooting the installation

  • Manually testing the installation

  • Modifying the OpenStack configuration

  • Virtual lab - vagrant up!

Introduction – the OpenStack architecture


OpenStack is a suite of projects that combine into a software-defined environment to be consumed using cloud friendly tools and techniques. The popular open source software allows users to easily consume compute, network, and storage resources that have been traditionally controlled by disparate methods and tools by various teams in IT departments, big and small. While consistency of APIs can be achieved between versions of OpenStack, an administrator is free to choose which features of OpenStack to install, and as such there is no single method or architecture to install the software. This flexibility can lead to confusion when choosing how to deploy OpenStack. That said, it is universally agreed that the services that the end users interact with—the OpenStack services, supporting software (such as the databases), and APIs—must be highly available.

A very popular method for installing OpenStack is the OpenStack-Ansible project (https://github.com/openstack/openstack-ansible). This method of installation allows an administrator to define highly available controllers together with arrays of compute and storage, and through the use of Ansible, deploy OpenStack in a very consistent way with a small amount of dependencies. Ansible is a tool that allows for system configuration and management that operates over standard SSH connections. Ansible itself has very few dependencies, and as it uses SSH to communicate, most Linux distributions and networks are well-catered for when it comes to using this tool. It is also very popular with many system administrators around the globe, so installing OpenStack on top of what they already know lowers the barrier to entry for setting up a cloud environment for their enterprise users.

OpenStack can be architected in any number of ways; OpenStack-Ansible doesn't address the architecture problem directly: users are free to define any number of controller services (such as Horizon, Neutron Server, Nova Server, and MySQL). Through experience at Rackspace and feedback from users, a popular architecture is defined, which is shown here:

Figure 1: Recommended OpenStack architecture used in this book

As shown in the preceding diagram (Figure 1), there are a few concepts to first understand. These are described as follows.

Controllers

The controllers (also referred to as infrastructure or infra nodes) run the heart of the OpenStack services and are the only servers exposed (via load balanced pools) to your end users. The controllers run the API services, such as Nova API, Keystone API, and Neutron API, as well as the core supporting services such as MariaDB for the database required to run OpenStack, and RabbitMQ for messaging. It is this reason why, in a production setting, these servers are set up as highly available as required. This means that these are deployed as clusters behind (highly available) load balancers, starting with a minimum of 3 in the cluster. Using odd numbers starting from 3 allows clusters to lose a single server without and affecting service and still remain with quorum (minimum numbers of votes needed). This means that when the unhealthy server comes back online, the data can be replicated from the remaining 2 servers (which are, between them, consistent), thus ensuring data consistency.

Networking is recommended to be highly resilient, so ensure that Linux has been configured to bond or aggregate the network interfaces so that in the event of a faulty switch port, or broken cable, your services remain available. An example networking configuration for Ubuntu can be found in Appendix A.

Computes

These are the servers that run the hypervisor or container service that OpenStack schedules workloads to when a user requests a Nova resource (such as a virtual machine). These are not too dissimilar to hosts running a hypervisor, such as ESXi or Hyper-V, and OpenStack Compute servers can be configured in a very similar way, optionally using shared storage. However, most installations of OpenStack forgo the need for the use of shared storage in the architecture. This small detail of not using shared storage, which implies the virtual machines run from the hard disks of the compute host itself, can have a large impact on the users of your OpenStack environment when it comes to discussing the resiliency of the applications in that environment. An environment set up like this pushes most of the responsibility for application uptime to developers, which gives the greatest flexibility of a long-term cloud strategy. When an application relies on the underlying infrastructure to be 100% available, the gravity imposed by the infrastructure ties applications to specific data center technology to keep it running. However, OpenStack can be configured to introduce shared storage such as Ceph (http://ceph.com/) to allow for operational features such as live-migration (the ability to move running instances from one hypervisor to another with no downtime), allowing enterprise users move their applications to a cloud environment in a very safe way. These concepts will be discussed in more detail in later chapters on compute and storage. As such, the reference architecture for a compute node is to expect virtual machines to run locally on the hard drives in the server itself.

With regard to networking, like the controllers, the network must also be configured to be highly available. A compute node that has no network available might be very secure, but it would be equally useless to a cloud environment! Configure bonded interfaces in the same way as the controllers. Further information for configuring bonded interfaces under Ubuntu can be found in Appendix A.

Storage

Storage in OpenStack refers to block storage and object storage. Block storage (providing LUNs or hard drives to virtual machines) is provided by the Cinder service, while object storage (API driven object or blobs of storage) is provided by Swift or Ceph. Swift and Ceph manage each individual drive in a server designated as an object storage node, very much like a RAID card manages individual drives in a typical server. Each drive is an independent entity that Swift or Ceph uses to write data to. For example, if a storage node has 24 x 2.5in SAS disks in, Swift or Ceph will be configured to write to any one of those 24 disks. Cinder, however, can use a multitude of backends to store data. For example, Cinder can be configured to communicate with third-party vendors such as NetApp or Solidfire arrays, or it can be configured to talk to Sheepdog or Ceph, as well as the simplest of services such as LVM. In fact, OpenStack can be configured in such a way that Cinder uses multiple backends so that a user is able to choose the storage applicable to the service they require. This gives great flexibility to both end users and operators as it means workloads can be targeted at specific backends suitable for that workload or storage requirement.

This book briefly covers Ceph as the backend storage engine for Cinder. Ceph is a very popular, highly available open source storage service. Ceph has its own disk requirements to give the best performance. Each of the Ceph storage nodes in the preceding diagram are referred to as Ceph OSDs (Ceph Object Storage Daemons). We recommend starting with 5 of these nodes, although this is not a hard and fast rule. Performance tuning of Ceph is beyond the scope of this book, but at a minimum, we would highly recommend having SSDs for Ceph journaling and either SSD or SAS drives for the OSDs (the physical storage units).

The differences between a Swift node and a Ceph node in this architecture are very minimal. Both require an interface (bonded for resilience) for replication of data in the storage cluster, as well as an interface (bonded for resilience) used for data reads and writes from the client or service consuming the storage.

The primary difference is the recommendation to use SSDs (or NVMe) as the journaling disks.

Load balancing

The end users of the OpenStack environment expect services to be highly available, and OpenStack provides REST API services to all of its features. This makes the REST API services very suitable for placing behind a load balancer. In most deployments, load balancers would usually be highly available hardware appliances such as F5. For the purpose of this book, we will be using HAProxy. The premise behind this is the same though—to ensure that the services are available so your end users can continue working in the event of a failed controller node.

OpenStack-Ansible installation requirements

Operating installing System: Ubuntu 16.04 x86_64

Minimal data center deployment requirements

For a physical installation, the following will be needed:

  • Controller servers (also known as infrastructure nodes)

    • At least 64 GB RAM

    • At least 300 GB disk (RAID)

    • 4 Network Interface Cards (for creating two sets of bonded interfaces; one would be used for infrastructure and all API communication, including client, and the other would be dedicated to OpenStack networking: Neutron)

    • Shared storage, or object storage service, to provide backend storage for the base OS images used

  • Compute servers

    • At least 64 GB RAM

    • At least 600 GB disk (RAID)

    • 4 Network Interface Cards (for creating two sets of bonded interfaces, used in the same way as the controller servers)

  • Optional (if using Ceph for Cinder) 5 Ceph Servers (Ceph OSD nodes)

    • At least 64 GB RAM

    • 2 x SSD (RAID1) 400 GB for journaling

    • 8 x SAS or SSD 300 GB (No RAID) for OSD (size up requirements and adjust accordingly)

    • 4 Network Interface Cards (for creating two sets of bonded interfaces; one for replication and the other for data transfer in and out of Ceph)

  • Optional (if using Swift) 5 Swift Servers

    • At least 64 GB RAM

    • 8 x SAS 300 GB (No RAID) (size up requirements and adjust accordingly)

    • 4 Network Interface Cards (for creating two sets of bonded interfaces; one for replication and the other for data transfer in and out of Swift)

  • Load balancers

    • 2 physical load balancers configured as a pair

    • Or 2 servers running HAProxy with a Keepalived VIP to provide as the API endpoint IP address:

      • At least 16 GB RAM

      • HAProxy + Keepalived

      • 2 Network Interface Cards (bonded)

Note

Tip: Setting up a physical home lab? Ensure you have a managed switch so that interfaces can have VLANs tagged.

Host network configuration


Installation of OpenStack using an orchestration and configuration tool such as Ansible performs a lot of tasks that would otherwise have to be undertaken manually. However, we can only use an orchestration tool if the servers we are deploying to are configured in a consistent way and described to Ansible.

The following section will describe a typical server setup that uses two sets of active/passive bonded interfaces for use by OpenStack. Ensure that these are cabled appropriately.

We assume that the following physical network cards are installed in each of the servers; adjust them to suit your environment:

  • p2p1 and p2p2

  • p4p1 and p4p2

We assume that the host network is currently using p2p1. The host network is the basic network that each of the servers currently resides on, and it allows you to access each one over SSH. It is assumed that this network also has a default gateway configured, and allows internet access. There should be no other networks required at this point as the servers are currently unconfigured and are not running OpenStack services.

At the end of this section, we will have created the following bonded interfaces:

  • bond0: This consists of the physical interfaces p2p1 and p4p1. The bond0 interface will be used for host, OpenStack management, and storage traffic.

  • bond1: This consists of the physical interfaces p2p2 and p4p2. The bond1 interface will be used for Neutron networking within OpenStack.

We will have created the following VLAN tagged interfaces:

  • bond0.236: This will be used for the container network

  • bond0.244: This will be used for the storage network

  • bond1.240: This will be used for the VXLAN tunnel network

And the following bridges:

  • br-mgmt: This will use the bond0.236 VLAN interface, and will be configured with an IP address from the 172.29.236.0/24 range.

  • br-storage: This will use the bond0.244 VLAN interface, and will be configured with an IP address from the 172.29.244.0/24 range.

  • br-vxlan: This will use the bond1.240 VLAN interface, and will be configured with an IP address from the 172.29.240.0/24 range.

  • br-vlan: This will use the untagged bond1 interface, and will not have an IP address configured.

Note

Tip: Ensure that your subnets are large enough to support your current requirements as well as future growth!

The following diagram shows the networks, interfaces, and bridges set up before we begin our installation of OpenStack:

Getting ready

We assume that each server has Ubuntu 16.04 installed.

Log in, as root, onto each server that will have OpenStack installed.

How to do it…

Configuration of the host's networking, on a Ubuntu system, is performed by editing the /etc/network/interfaces file.

  1. First of all, ensure that we have the right network packages installed on each server. As we are using VLANs and Bridges, the following packages must be installed:

            apt update
            apt install vlan bridge-utils
    
  2. Now edit the /etc/network/interfaces file on the first server using your preferred editor:

            vi /etc/network/interfaces
    
  3. We will first configure the bonded interfaces. The first part of the file will describe this. Edit this file so that it looks like the following to begin with:

        # p2p1 + p4p1 = bond0 (used for host, container and storage)
        auto p2p1
        iface p2p1 inet manual
          bond-master bond0
          bond-primary p2p1
        auto p4p1
        iface p4p1 inet manual
          bond-master bond0
        # p2p2 + p4p2 = bond1 (used for Neutron and Storage Replication)
        auto p2p2
        iface p2p2 inet manual
          bond-master bond1
          bond-primary p2p2
        auto p4p2
        iface p4p2 inet manual
          bond-master bond1
  4. Now we will configure the VLAN interfaces that are tagged against these bonds. Continue editing the file to add in the following tagged interfaces. Note that we are not assigning IP addresses to the OpenStack bonds just yet:

        # We're using bond0 on a native VLAN for the 'host' network.
        # This bonded interface is likely to replace the address you
        # are currently using to connect to this host.
        auto bond0
        iface bond0 inet static
          address 192.168.100.11
          netmask 255.255.255.0
          gateway 192.168.100.1
          dns-nameserver 192.168.100.1 # Update to suit/ensure you can resolve DNS
        auto bond0.236  # Container VLAN
        iface bond0.236  inet manual
        auto bond1.240  # VXLAN Tunnel VLAN
        iface bond1.240  inet manual
        auto bond0.244  # Storage (Instance to Storage) VLAN
        iface bond0.244  inet manual

    Note

    Tip: Use appropriate VLANs as required in your own environment. The VLAN tags used here are for reference only.

    Ensure that the correct VLAN tag is configured against the correct bonded interface. bond0 is for host-type traffic, bond1 is predominantly for Neutron-based traffic, except for storage nodes, where it is then used for storage replication.

  5. We will now create the bridges, and place IP addresses on here as necessary (note that br-vlan does not have an IP address assigned). Continue editing the same file and add in the following lines:

    # Container bridge (br-mgmt)
    auto br-mgmt
    iface br-mgmt inet static
      address 172.29.236.11
      netmask 255.255.255.0
      bridge_ports bond0.236        
      bridge_stp off
    # Neutron's VXLAN bridge (br-vxlan)
    auto br-vxlan
    iface br-vxlan inet static
      address 172.29.240.11
      netmask 255.255.255.0
      bridge_ports bond1.240       
      bridge_stp off
    # Neutron's VLAN bridge (br-vlan)
    auto br-vlan
    iface br-vlan inet manual
      bridge_ports bond1
      bridge_stp off
    # Storage Bridge (br-storage)
    auto br-storage
    iface br-storage inet static
      address 172.29.244.11
      netmask 255.255.255.0
      bridge_ports bond0.244
      bridge_stp off

    Note

    These bridge names are referenced in the OpenStack-Ansible configuration file, so ensure you name them correctly.

    Be careful in ensuring that the correct bridge is assigned to the correct bonded interface.

  6. Save and exit the file, then issue the following command:

    restart networking
    
  7. As we are configuring our OpenStack environment to be as highly available as possible, it is suggested that you also reboot your server at this point to ensure the basic server, with redundant networking in place, comes back up as expected:

    reboot
    
  8. Now repeat this for each server on your network.

  9. Once all the servers are done, ensure that your servers can communicate with each other over these newly created interfaces and subnets. A test like the following might be convenient:

    apt install fping
    fping -a -g 172.29.236.0/24
    fping -a -g 172.29.240.0/24
    fping -a -g 172.29.244.0/24
    

Note

Tip: We also recommend that you perform a network cable unplugging exercise to ensure that the failover from one active interface to another is working as expected.

How it works…

We have configured the physical networking of our hosts to ensure a good known state and configuration for running OpenStack. Each of the interfaces configured here is specific to OpenStack—either directly managed by OpenStack (for example, br-vlan) or used for inter-service communication (for example, br-mgmt). In the former case, OpenStack utilizes the br-vlan bridge and configures tagged interfaces on bond1 directly.

Note that the convention used here, of VLAN tag ID using a portion of the subnet, is only to highlight a separation of VLANs to specific subnets (for example, bond0.236 is used by the 172.29.236.0/24 subnet). This VLAN tag ID is arbitrary, but must be set up in accordance with your specific networking requirements.

Finally, we performed a fairly rudimentary test of the network. This gives you the confidence that the network configuration that will be used throughout the life of your OpenStack cloud is fit for purpose and gives assurances in the event of a failure of a cable or network card.

Root SSH keys configuration


Ansible is designed to help system administrators drive greater efficiency in the datacenter by being able to configure and operate many servers using orchestration playbooks. In order for Ansible to be able to fulfill its duties, it needs an SSH connection on the Linux systems it is managing. Furthermore, in order to have a greater degree of freedom and flexibility, a hands-off approach using SSH public private key pairs is required.

As the installation of OpenStack is expected to run as root, this stage expects the deployment host's root public key to be propagated across all servers.

Getting ready

Ensure that you are root on the deployment host. In most cases, this is the first infrastructure controller node that we have named for the purposes of this book to be called infra01. We will be assuming that all Ansible commands will be run from this host, and that it expects to be able to connect to the rest of the servers on this network over the host network via SSH.

How to do it…

In order to allow a hands-free, orchestrated OpenStack-Ansible deployment, follow these steps to create and propagate root SSH public key of infra01 across all servers required of the installation:

  1. As root, execute the following command to create an SSH key pair:

    ssh-keygen -t rsa -f ~/.ssh/id_rsa -N ""
    

    The output should look similar to this:

    Generating public/private rsa key pair.
    Your identification has been saved in /root/.ssh/id_rsa.
    Your public key has been saved in /root/.ssh/id_rsa.pub.
    The key fingerprint is:
    SHA256:q0mdqJI3TTFaiLrMaPABBboTsyr3pRnCaylLU5WEDCw root@infra01
    The key's randomart image is:
    +---[RSA 2048]----+
    |ooo ..           |
    |E..o. .          |
    |=. . +           |
    |.=. o +          |
    |+o . o oS        |
    |+oo . .o       |
    |B=++.o+ +        |
    |*=B+oB.o         |
    |o+.o=.o          |
    +----[SHA256]-----+
    
  2. This has created two files in /root/.ssh, called id_rsa and id_rsa.pub. The file, id_rsa is the private key, and must not be copied across the network. It is not required to be anywhere other than on this server. The file, id_rsa.pub, is the public key and can be shared to other servers on the network. If you have other nodes (for example, named infra02), use the following to copy this key to that node in your environment:

    ssh-copy-id root@infra02
    

    Note

    Tip: Ensure that you can resolve infra02 and the other servers, else amend the preceding command to use its host IP address instead.

  3. Now repeat step 2 for all servers on your network.

  4. Important: finally, ensure that you execute the following command to be able to SSH to itself:

    ssh-copy-id root@infra01
    
  5. Test that you can ssh, as the root user, from infra01 to other servers on your network. You should be presented with a Terminal ready to accept commands if successful, without being prompted for a passphrase. Consult /var/log/auth.log on the remote server if this behavior is incorrect.

How it works…

We first generated a key pair file for use by SSH. The -t option specified the rsa type encryption, -f specified the output of the private key, where the public portion will get .pub appended to its name, and -N "" specified that no passphrase is to be used on this key. Consult your own security standards if the presented options differ from your company's requirements.

Installing Ansible, playbooks, and dependencies


In order for us to successfully install OpenStack using Ansible, we need to ensure that Ansible and any expected dependencies are installed on the deployment host. The OpenStack-Ansible project provides a handy script to do this for us, which is part of the version of OpenStack-Ansible we will be deploying.

Getting ready

Ensure that you are root on the deployment host. In most cases, this is the first infrastructure controller node, infra01.

At this point, we will be checking out the version of OpenStack-Ansible from GitHub.

How to do it…

To set up Ansible and its dependencies, follow these steps:

  1. We first need to use git to check out the OpenStack-Ansible code from GitHub, so ensure that the following packages are installed (among other needed dependencies):

    apt update
    apt install git python-dev bridge-tools lsof lvm2 tcpdump build-   essential ntp ntpdate python-dev libyaml-dev libpython2.7-dev libffi-dev libssl-dev python-crypto python-yaml
    
  2. We then need to grab the OpenStack-Ansible code from GitHub. At the time of writing, the Pike release branch (16.X) is described as follows, but the steps remain the same for the foreseeable future. It is recommended that you use the latest stable tag by visiting https://github.com/openstack/openstack-ansible/tags. Here we're using the latest 16 (Pike) tag denoted by 16.0.5:

    Note

    Tip: To use a branch of the Queens release, use the following: -b 17.0.0. When the Rocky release is available, use -b 18.0.0.

    git clone -b 16.0.5 https://github.com/openstack/openstack-ansible.git /opt/openstack-ansible
    
  3. Ansible and the needed dependencies to successfully install OpenStack can be found in the /opt/openstack-ansible/scripts directory. Issue the following command to bootstrap the environment:

    cd /opt/openstack-ansible
    scripts/boot
    strap-ansible.sh
    

How it works…

The OpenStack-Ansible project provides a handy script to ensure that Ansible and the right dependencies are installed on the deployment host. This script (bootstrap-ansible.sh) lives in the scripts/ directory of the checked out OpenStack-Ansible code, so at this stage we need to grab the version we want to deploy using Git. Once we have the code, we can execute the script and wait for it to complete.

Left arrow icon Right arrow icon

Key benefits

  • • Over 100 recipes created by a team of OpenStack experts
  • • Updated to work with the latest OpenStack builds, with recipes covering the installation and use of OpenStack with Ansible
  • • It covers topics such as Keystone, Glance, Neutron, Nova, Cinder, and more, plus recipes for OpenStack storage, networking, and orchestrating workloads
  • • Test drive OpenStack using the accompanying Vagrant environment

Description

This is the fourth edition of the industry-acclaimed OpenStack Cloud Computing Cookbook, created by four recognized OpenStack experts. It has now been updated to work with the latest OpenStack builds, using tools and processes based on their collective and vast OpenStack experience. OpenStack Open Source Cloud software is one of the most used cloud infrastructures to support a wide variety of use cases, from software development to big data analysis. It is developed by a thriving community of individual developers from around the globe and backed by most of the leading players in the cloud space today. We make it simple to implement, massively scalable, and able to store a large pool of data and networking resources. OpenStack has a strong ecosystem that helps you provision your cloud storage needs. Add OpenStack's enterprise features to reduce the cost of your business. This book will begin by showing you the steps to build up an OpenStack private cloud environment using Ansible. You'll then discover the uses of cloud services such as the identity service, image service, and compute service. You'll dive into Neutron, the OpenStack Networking service, and get your hands dirty with configuring networks, routers, load balancers, and more. You’ll then gather more expert knowledge on OpenStack cloud computing by managing your cloud's security and migration. After that, we delve into OpenStack Object storage and you’ll see how to manage servers and work with objects, cluster, and storage functionalities. Finally, you will learn about OpenStack dashboard, Ansible, Keystone, and other interesting topics.

Who is this book for?

This book is written for cloud system engineers, system administrators, and technical architects who are moving from a virtualized environment to cloud environments. This book assumes that you are familiar with cloud computing platforms, and have knowledge of virtualization, networking, and managing Linux environments.

What you will learn

  • • Understand, install, configure, and manage a complete OpenStack Cloud platform using OpenStack-Ansible
  • • Configure networks, routers, load balancers, and more with Neutron
  • • Use Keystone to setup domains, roles, groups and user access
  • • Learn how to use Swift and setup container access control lists
  • • Gain hands-on experience and familiarity with Horizon, the OpenStack Dashboard user interface
  • • Automate complete solutions with our recipes on Heat, the OpenStack Orchestration service as well as using Ansible to orchestrate application workloads
  • • Follow practical advice and examples to run OpenStack in production

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jan 29, 2018
Length: 398 pages
Edition : 4th
Language : English
ISBN-13 : 9781788399333
Vendor :
OpenStack
Tools :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Jan 29, 2018
Length: 398 pages
Edition : 4th
Language : English
ISBN-13 : 9781788399333
Vendor :
OpenStack
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 112.97
Mastering OpenStack
€37.99
OpenStack Cloud Computing Cookbook
€41.99
OpenStack for Architects
€32.99
Total 112.97 Stars icon

Table of Contents

10 Chapters
Installing OpenStack with Ansible Chevron down icon Chevron up icon
The OpenStack Client Chevron down icon Chevron up icon
Keystone – OpenStack Identity Service Chevron down icon Chevron up icon
Neutron – OpenStack Networking Chevron down icon Chevron up icon
Nova – OpenStack Compute Chevron down icon Chevron up icon
Glance – OpenStack Image Service Chevron down icon Chevron up icon
Cinder – OpenStack Block Storage Chevron down icon Chevron up icon
Swift – OpenStack Object Storage Chevron down icon Chevron up icon
OpenStack Orchestration Using Heat and Ansible Chevron down icon Chevron up icon
Using OpenStack Dashboard Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.3
(10 Ratings)
5 star 60%
4 star 20%
3 star 10%
2 star 10%
1 star 0%
Filter icon Filter
Top Reviews

Filter reviews by




Saumik Satapathy Dec 04, 2018
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Good book to start openstack. Step by strp guide to learn and master over openstack.
Amazon Verified review Amazon
Rebecca Fitzhugh Mar 03, 2018
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Regardless of whether you are a beginner or experienced with OpenStack, this book provides a plethora of information. It provides information from high level architectural decision making assistance to Ansible code. It is an excellent all-around guide that explores all facts of OpenStack. Recommend adding it to your bookshelf!
Amazon Verified review Amazon
Paolo Correnti Nov 23, 2019
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Per avere un'idea di base di cosa sia Openstack
Amazon Verified review Amazon
Stephen Beaver Feb 20, 2018
Full star icon Full star icon Full star icon Full star icon Full star icon 5
OpenStack Cloud Computing Cookbook is a solid guide for anyone that is starting out as well as a quick reference guide for the seasoned administrator. Whether you are just starting out and are looking for a step by step guide from deployment to operations or a reference point on a specific topic. This cookbook will be a great addition to your technical library for information all about OpenStack.
Amazon Verified review Amazon
Stefan Lenz May 21, 2018
Full star icon Full star icon Full star icon Full star icon Full star icon 5
The cookbook always was a great resource to learn about the basics of Openstack and to set up ones own clusters. While the earlier editions were limited with respect to network topologies and production cluster setup, the new, fourth editions has made a big step forward. The presented network topology and setup recipes of the cookbook are "production grade". You learn how to build your own small production cluster that can be used for learning but also to test real workloads. Kudos to the writers for this new edition.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.