Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Mastering ROS for Robotics Programming
Mastering ROS for Robotics Programming

Mastering ROS for Robotics Programming: Design, build, and simulate complex robots using the Robot Operating System

eBook
€8.99 €36.99
Paperback
€45.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Table of content icon View table of contents Preview book icon Preview Book

Mastering ROS for Robotics Programming

Chapter 2. Working with 3D Robot Modeling in ROS

The first phase of robot manufacturing is its design and modeling. We can design and model the robot using CAD tools such as AutoCAD, Solid Works, Blender, and so on. One of the main purposes of modeling robot is simulation.

The robotic simulation tool can check the critical flaws in the robot design and can confirm the working of the robot before it goes to the manufacturing phase.

The virtual robot model must have all the characteristics of real hardware, the shape of robot may or may not look like the actual robot but it must be an abstract, which has all the physical characteristics of the actual robot.

In this chapter, we are going to discuss the designing of two robots. One is a seven DOF ( Degrees of Freedom) manipulator and the other is a differential drive robot. In the upcoming chapters, we can see its simulation and how to build the real hardware and finally, it's interfacing to ROS.

If we are planning to create the...

ROS packages for robot modeling

ROS provides some good packages that can be used to build 3D robot models. In this section, we will discuss some of the important ROS packages that are commonly used to build robot models:

  • robot_model: ROS has a meta package called robot_model, which contains important packages that help build the 3D robot models. We can see all the important packages inside this meta-package:
    • urdf: One of the important packages inside the robot_model meta package is urdf. The URDF package contains a C++ parser for the Unified Robot Description Format (URDF), which is an XML file to represent a robot model.
  • We can define a robot model, sensors, and a working environment using URDF and can parse it using URDF parsers. We can only describe a robot in URDF that has a tree-like structure in its links, that is, the robot will have rigid links and will be connected using joints. Flexible links can't be represented using URDF. The URDF is composed using special XML tags and we...

Understanding robot modeling using URDF

We have discussed the urdf package. In this section, we will look further at the URDF XML tags, which help to model the robot. We have to create a file and write the relationship between each link and joint in the robot and save the file with the .urdf extension.

The URDF can represent the kinematic and dynamic description of the robot, visual representation of the robot, and the collision model of the robot.

The following tags are the commonly used URDF tags to compose a URDF robot model:

  • link: The link tag represents a single link of a robot. Using this tag, we can model a robot link and its properties. The modeling includes size, shape, color, and can even import a 3D mesh to represent the robot link. We can also provide dynamic properties of the link such as inertial matrix and collision properties.

    The syntax is as follows:

    <link name="<name of the link>">
    <inertial>...........</inertial>
      <visual> ..........

Creating the ROS package for the robot description

Before creating the URDF file for the robot, let's create a ROS package in the catkin workspace so that the robot model keeps using the following command:

$ catkin_create_pkg mastering_ros_robot_description_pkg roscpp tf geometry_msgs urdf rviz xacro 

The package mainly depends on the urdf and xacro packages, and we can create the urdf file of the robot inside this package and create launch files to display the created urdf in RViz. The full package is available on the following Git repository, you can clone the repository for a reference to implement this package or you can get the package from the book's source code:

$ git clone https://github.com/qboticslabs/mastering_ros_robot_description_pkg.git

Before creating the urdf file for this robot, let's create three folders called urdf, meshes, and launch inside the package folder. The urdf folder can be used to keep the urdf/xacro files that we are going to create. The meshes...

Creating our first URDF model

After learning about URDF and its important tags, we can start some basic modeling using URDF. The first robot mechanism that we are going to design is a pan and tilt mechanism as shown in the following figure.

There are three links and two joints in this mechanism. The base link is static, in which all other links are mounted. The first joint can pan on its axis and the second link is mounted on the first link and it can tilt on its axis. The two joints in this system are of a revolute type.

Creating our first URDF model

Figure 4 : Visualization of a pan and tilt mechanism in RViz

Let's see the URDF code of this mechanism. Navigate to chapter_2_code/mastering_ros_robot_description_pkg/urdf and open pan_tilt.urdf. The code indentation in URDF is not mandatory for URDF but it keeping indentation can improve code readability:

<?xml version="1.0"?>
<robot name="pan_tilt">

  <link name="base_link">
    <visual>
      <geometry>
...

Explaining the URDF file

When we check the code, we can add a <robot> tag at the top of the description:

<?xml version="1.0"?>
<robot name="pan_tilt">

The <robot> tag defines the name of the robot that we are going to create. Here, we named the robot pan_tilt.

If we check the sections after the <robot> tag definition, we can see link and joint definitions of the pan and tilt mechanism:

  <link name="base_link">
    <visual>
      <geometry>
      <cylinder length="0.01" radius="0.2"/>
      </geometry>
      <origin rpy="0 0 0" xyz="0 0 0"/>
      <material name="yellow">
        <color rgba="1 1 0 1"/>
      </material>
    </visual>
  </link>

The preceding code snippet is the base_link definition of the pan and tilt mechanism. The <visual> tag can describe the visual appearance of the link, which is shown...

ROS packages for robot modeling


ROS provides some good packages that can be used to build 3D robot models. In this section, we will discuss some of the important ROS packages that are commonly used to build robot models:

  • robot_model: ROS has a meta package called robot_model, which contains important packages that help build the 3D robot models. We can see all the important packages inside this meta-package:

    • urdf: One of the important packages inside the robot_model meta package is urdf. The URDF package contains a C++ parser for the Unified Robot Description Format (URDF), which is an XML file to represent a robot model.

  • We can define a robot model, sensors, and a working environment using URDF and can parse it using URDF parsers. We can only describe a robot in URDF that has a tree-like structure in its links, that is, the robot will have rigid links and will be connected using joints. Flexible links can't be represented using URDF. The URDF is composed using special XML tags and we can...

Understanding robot modeling using URDF


We have discussed the urdf package. In this section, we will look further at the URDF XML tags, which help to model the robot. We have to create a file and write the relationship between each link and joint in the robot and save the file with the .urdf extension.

The URDF can represent the kinematic and dynamic description of the robot, visual representation of the robot, and the collision model of the robot.

The following tags are the commonly used URDF tags to compose a URDF robot model:

  • link: The link tag represents a single link of a robot. Using this tag, we can model a robot link and its properties. The modeling includes size, shape, color, and can even import a 3D mesh to represent the robot link. We can also provide dynamic properties of the link such as inertial matrix and collision properties.

    The syntax is as follows:

    <link name="<name of the link>">
    <inertial>...........</inertial>
      <visual> ............</visual...

Creating the ROS package for the robot description


Before creating the URDF file for the robot, let's create a ROS package in the catkin workspace so that the robot model keeps using the following command:

$ catkin_create_pkg mastering_ros_robot_description_pkg roscpp tf geometry_msgs urdf rviz xacro 

The package mainly depends on the urdf and xacro packages, and we can create the urdf file of the robot inside this package and create launch files to display the created urdf in RViz. The full package is available on the following Git repository, you can clone the repository for a reference to implement this package or you can get the package from the book's source code:

$ git clone https://github.com/qboticslabs/mastering_ros_robot_description_pkg.git

Before creating the urdf file for this robot, let's create three folders called urdf, meshes, and launch inside the package folder. The urdf folder can be used to keep the urdf/xacro files that we are going to create. The meshes folder keeps...

Creating our first URDF model


After learning about URDF and its important tags, we can start some basic modeling using URDF. The first robot mechanism that we are going to design is a pan and tilt mechanism as shown in the following figure.

There are three links and two joints in this mechanism. The base link is static, in which all other links are mounted. The first joint can pan on its axis and the second link is mounted on the first link and it can tilt on its axis. The two joints in this system are of a revolute type.

Figure 4 : Visualization of a pan and tilt mechanism in RViz

Let's see the URDF code of this mechanism. Navigate to chapter_2_code/mastering_ros_robot_description_pkg/urdf and open pan_tilt.urdf. The code indentation in URDF is not mandatory for URDF but it keeping indentation can improve code readability:

<?xml version="1.0"?>
<robot name="pan_tilt">

  <link name="base_link">
    <visual>
      <geometry>
      <cylinder length="0.01" radius...

Explaining the URDF file


When we check the code, we can add a <robot> tag at the top of the description:

<?xml version="1.0"?>
<robot name="pan_tilt">

The <robot> tag defines the name of the robot that we are going to create. Here, we named the robot pan_tilt.

If we check the sections after the <robot> tag definition, we can see link and joint definitions of the pan and tilt mechanism:

  <link name="base_link">
    <visual>
      <geometry>
      <cylinder length="0.01" radius="0.2"/>
      </geometry>
      <origin rpy="0 0 0" xyz="0 0 0"/>
      <material name="yellow">
        <color rgba="1 1 0 1"/>
      </material>
    </visual>
  </link>

The preceding code snippet is the base_link definition of the pan and tilt mechanism. The <visual> tag can describe the visual appearance of the link, which is shown on the robot simulation. We can define the link geometry (cylinder, box, sphere, or mesh...

Visualizing the robot 3D model in RViz


After designing URDF, we can view it on RViz. We can create a view_demo.launch launch file and put the following code into the launch folder. Navigate to chapter_2_code/mastering_ros_robot_description_pkg/launch for the same code:

<launch>
  <arg name="model" />
  <param name="robot_description" textfile="$(find mastering_ros_robot_description_pkg)/urdf/pan_tilt.urdf" />
  <param name="use_gui" value="true"/>

  <node name="joint_state_publisher" pkg="joint_state_publisher" type="joint_state_publisher" />
  <node name="robot_state_publisher" pkg="robot_state_publisher" type="state_publisher" />
  <node name="rviz" pkg="rviz" type="rviz" args="-d $(find mastering_ros_robot_description_pkg)/urdf.rviz" required="true" />

</launch>

We can launch the model using the following command:

$ roslaunch mastering_ros_robot_description_pkg view_demo.launch

If everything works fine, we will get a pan and tilt mechanism...

Adding physical and collision properties to a URDF model


Before simulating a robot in a robot simulator, such as Gazebo, V-REP, and so on, we need to define the robot link's physical properties such as geometry, color, mass, and inertia, and the collision properties of the link.

We will only get good simulation results if we define all these properties inside the robot model. URDF provides tags to include all these parameters and code snippets of base_link contained in theses properties as given here:

<link>
......    
<collision>
      <geometry>
      <cylinder length="0.03" radius="0.2"/>
      </geometry>
      <origin rpy="0 0 0" xyz="0 0 0"/>
    </collision>

    <inertial>
    <mass value="1"/>
    <inertia ixx="1.0" ixy="0.0" ixz="0.0" iyy="1.0" iyz="0.0" izz="1.0"/>
    </inertial>
...........
</link>

Here, we define the collision geometry as cylinder and the mass as 1 Kg, and we also set the inertial matrix of...

Understanding robot modeling using xacro


The flexibility of URDF reduces when we work with complex robot models. Some of the main features that URDF is missing are the simplicity, reusability, modularity, and programmability.

If someone wants to reuse a URDF block ten times in his robot description, he can copy and paste the block ten times. If there is an option to use this code block and make multiple copies with different settings, it will be very useful while creating the robot description.

The URDF is single file and we can't include other URDF files inside it. This reduces the modular nature of the code. All code should be in a single file, which reduces the code simplicity too.

Also, if there is some programmability, such as adding variable, constants, mathematical expressions, conditional statement, and so on, in the description language, it will be more user friendly.

The robot modeling using xacro meets all these conditions and some of the main features of xacro are as follows:

  • Simplify...

Conversion of xacro to URDF


After designing the xacro file, we can use the following command to convert it into a UDRF file:

$ rosrun xacro xacro.py pan_tilt.xacro > pan_tilt_generated.urdf

We can use the following line in the ROS launch file for converting xacro to UDRF and use it as a robot_description parameter:

  <param name="robot_description" command="$(find xacro)/xacro.py $(find mastering_ros_robot_description_pkg)/urdf/pan_tilt.xacro" />

We can view the xacro of pan and tilt by making a launch file, and it can be launched using the following command:

$ roslaunch mastering_ros_robot_description_pkg view_pan_tilt_xacro.launch
Left arrow icon Right arrow icon

Key benefits

  • • Develop complex robotic applications using ROS for interfacing robot manipulators and mobile robots with the help of high end robotic sensors
  • • Gain insights into autonomous navigation in mobile robot and motion planning in robot manipulators
  • • Discover the best practices and troubleshooting solutions everyone needs when working on ROS

Description

The area of robotics is gaining huge momentum among corporate people, researchers, hobbyists, and students. The major challenge in robotics is its controlling software. The Robot Operating System (ROS) is a modular software platform to develop generic robotic applications. This book discusses the advanced concepts in robotics and how to program using ROS. It starts with deep overview of the ROS framework, which will give you a clear idea of how ROS really works. During the course of the book, you will learn how to build models of complex robots, and simulate and interface the robot using the ROS MoveIt motion planning library and ROS navigation stacks. After discussing robot manipulation and navigation in robots, you will get to grips with the interfacing I/O boards, sensors, and actuators of ROS. One of the essential ingredients of robots are vision sensors, and an entire chapter is dedicated to the vision sensor, its interfacing in ROS, and its programming. You will discuss the hardware interfacing and simulation of complex robot to ROS and ROS Industrial (Package used for interfacing industrial robots). Finally, you will get to know the best practices to follow when programming using ROS.

Who is this book for?

If you are a robotics enthusiast or researcher who wants to learn more about building robot applications using ROS, this book is for you. In order to learn from this book, you should have a basic knowledge of ROS, GNU/Linux, and C++ programming concepts. The book will also be good for programmers who want to explore the advanced features of ROS.

What you will learn

  • •Create a robot model of a Seven-DOF robotic arm and a differential wheeled mobile robot
  • • Work with motion planning of a Seven-DOF arm using MoveIt!
  • • Implement autonomous navigation in differential drive robots using SLAM and AMCL packages in ROS
  • • Dig deep into the ROS Pluginlib, ROS nodelets, and Gazebo plugins
  • • Interface I/O boards such as Arduino, Robot sensors, and High end actuators with ROS
  • • Simulation and motion planning of ABB and Universal arm using ROS Industrial
  • • Explore the ROS framework using its latest version
Estimated delivery fee Deliver to Italy

Premium delivery 7 - 10 business days

€17.95
(Includes tracking information)

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Dec 21, 2015
Length: 480 pages
Edition : 1st
Language : English
ISBN-13 : 9781783551798
Category :
Languages :
Concepts :

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Estimated delivery fee Deliver to Italy

Premium delivery 7 - 10 business days

€17.95
(Includes tracking information)

Product Details

Publication date : Dec 21, 2015
Length: 480 pages
Edition : 1st
Language : English
ISBN-13 : 9781783551798
Category :
Languages :
Concepts :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 129.97
Mastering ROS for Robotics Programming
€45.99
ROS Robotics By Example
€41.99
Learning ROS for Robotics Programming Second Edition
€41.99
Total 129.97 Stars icon
Banner background image

Table of Contents

13 Chapters
1. Introduction to ROS and Its Package Management Chevron down icon Chevron up icon
2. Working with 3D Robot Modeling in ROS Chevron down icon Chevron up icon
3. Simulating Robots Using ROS and Gazebo Chevron down icon Chevron up icon
4. Using the ROS MoveIt! and Navigation Stack Chevron down icon Chevron up icon
5. Working with Pluginlib, Nodelets, and Gazebo Plugins Chevron down icon Chevron up icon
6. Writing ROS Controllers and Visualization Plugins Chevron down icon Chevron up icon
7. Interfacing I/O Boards, Sensors, and Actuators to ROS Chevron down icon Chevron up icon
8. Programming Vision Sensors using ROS, Open-CV, and PCL Chevron down icon Chevron up icon
9. Building and Interfacing Differential Drive Mobile Robot Hardware in ROS Chevron down icon Chevron up icon
10. Exploring the Advanced Capabilities of ROS-MoveIt! Chevron down icon Chevron up icon
11. ROS for Industrial Robots Chevron down icon Chevron up icon
12. Troubleshooting and Best Practices in ROS Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
(10 Ratings)
5 star 40%
4 star 30%
3 star 20%
2 star 10%
1 star 0%
Filter icon Filter
Top Reviews

Filter reviews by




Lloyd F. Mar 29, 2016
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Good covers Indigo an Jade, unlike the OSRF book, which was outdated by the time it got to press.
Amazon Verified review Amazon
Neil John Feb 01, 2016
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book contain detail description about R.O.S and its new features !!Really loved it !!
Amazon Verified review Amazon
Cattaneo A. Apr 09, 2016
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Proprio quello che volevo, spiega tt di ros e delle nuove funzioni, per capirloServe una base di c e dell'ambiente Linux , cosigliato per chi come me sta' preparando laTesi in ing. robotica
Amazon Verified review Amazon
Amazon Customer Dec 21, 2016
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Nicely and quick delivery. Decently packed in a compact recipient so that it fits the mailbox.Very good and detailed book, however not for a novice.
Amazon Verified review Amazon
Bukworm Mar 29, 2017
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
Nicely written book!
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact customercare@packt.com with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at customercare@packt.com using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on customercare@packt.com with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on customercare@packt.com within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on customercare@packt.com who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on customercare@packt.com within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela