Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Predictive Analytics with R, Second Edition

You're reading from   Mastering Predictive Analytics with R, Second Edition Machine learning techniques for advanced models

Arrow left icon
Product type Paperback
Published in Aug 2017
Publisher Packt
ISBN-13 9781787121393
Length 448 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
James D. Miller James D. Miller
Author Profile Icon James D. Miller
James D. Miller
Rui Miguel Forte Rui Miguel Forte
Author Profile Icon Rui Miguel Forte
Rui Miguel Forte
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Gearing Up for Predictive Modeling FREE CHAPTER 2. Tidying Data and Measuring Performance 3. Linear Regression 4. Generalized Linear Models 5. Neural Networks 6. Support Vector Machines 7. Tree-Based Methods 8. Dimensionality Reduction 9. Ensemble Methods 10. Probabilistic Graphical Models 11. Topic Modeling 12. Recommendation Systems 13. Scaling Up 14. Deep Learning Index

Classifying with linear regression


Even though we know classification problems involve qualitative outputs, it seems natural to ask whether we could use our existing knowledge of linear regression and apply it to the classification setting. We could do this by training a linear regression model to predict a value in the interval [0, 1], remembering that we've chosen to label our two classes as 0 and 1. Then, we could apply a threshold to the output of our model in such a way that, if the model outputs a value below 0.5, we would predict class 0; otherwise, we would predict class 1.

The following graph demonstrates this concept for a simple linear regression with a single input feature X1 and for a binary classification problem.

Our output variable y is either 0 or 1, so all the data lies on two horizontal lines. The solid line shows the output of the model, and the dashed line shows the decision boundary, which arises when we put a threshold on the model's predicted output at the value 0...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime