Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Concurrency in Python

You're reading from   Mastering Concurrency in Python Create faster programs using concurrency, asynchronous, multithreading, and parallel programming

Arrow left icon
Product type Paperback
Published in Nov 2018
Publisher Packt
ISBN-13 9781789343052
Length 446 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Quan Nguyen Quan Nguyen
Author Profile Icon Quan Nguyen
Quan Nguyen
Arrow right icon
View More author details
Toc

Table of Contents (22) Chapters Close

Preface 1. Advanced Introduction to Concurrent and Parallel Programming FREE CHAPTER 2. Amdahl's Law 3. Working with Threads in Python 4. Using the with Statement in Threads 5. Concurrent Web Requests 6. Working with Processes in Python 7. Reduction Operators in Processes 8. Concurrent Image Processing 9. Introduction to Asynchronous Programming 10. Implementing Asynchronous Programming in Python 11. Building Communication Channels with asyncio 12. Deadlocks 13. Starvation 14. Race Conditions 15. The Global Interpreter Lock 16. Designing Lock-Based and Mutex-Free Concurrent Data Structures 17. Memory Models and Operations on Atomic Types 18. Building a Server from Scratch 19. Testing, Debugging, and Scheduling Concurrent Applications 20. Assessments 21. Other Books You May Enjoy

Locks as a solution to race conditions

In this section, we will discuss the most common solution to race conditions: locks. Intuitively, since the race conditions that we observed arose when multiple threads or processes accessed and wrote to a shared resource simultaneously, the key idea to solving race conditions is to isolate the executions of different threads/processes, especially when interacting with a shared resource. Specifically, we need to make sure that a thread/process can only access the shared resource after any other threads/processes interacting with the resource have finished their interactions with that resource.

The effectiveness of locks

With locks, we can turn a shared resource in a concurrent program...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image