Example – diagnosing breast cancer with the k-NN algorithm
Routine breast cancer screening allows the disease to be diagnosed and treated prior to it causing noticeable symptoms. The process of early detection involves examining the breast tissue for abnormal lumps or masses. If a lump is found, a fine-needle aspiration biopsy is performed, which uses a hollow needle to extract a small sample of cells from the mass. A clinician then examines the cells under a microscope to determine whether the mass is likely to be malignant or benign.
If machine learning could automate the identification of cancerous cells, it would provide considerable benefit to the health system. Automated processes are likely to improve the efficiency of the detection process, allowing physicians to spend less time diagnosing and more time treating the disease. An automated screening system might also provide greater detection accuracy by removing the inherently subjective human component from...