In the last decade, data science has become a buzzword, with Harvard Business Review naming it the sexiest job of the 21st century. What is a data scientist? The answer was published in The Guardian (https://www.theguardian.com/careers/2015/jun/30/whats-a-data-scientist-and-how-do-i-become-one):
The technical skills of a data scientist are varied but, generally, they are good at programming, and have a very strong background in mathematics—especially statistics, skills in machine learning, and knowledge of big data. A data scientist is required to have in-depth understanding of the domain he/she is working in. Julia was designed for scientific and numerical computation. And with the advent of big data, there is a requirement to have a language that can work on huge amounts of data. Although we have Spark and MapReduce (Hadoop) as processing engines that are generally used with Python, Scala, and Java, Julia with Intel's High Performance Analytics Toolkit can provide an alternative option. It may also be worth noting that Julia excels at parallel computing but is much easier to write and prototype than Spark/Hadoop.
One great feature of Julia is that it solves the 2-language problem. Generally, with Python and R, code that is doing most of the heavy workload is written in C/C++ and it is then called. This is not required with Julia, as it can perform comparably to C/C++. Therefore, complete code—including code that does heavy computations—can be written in Julia itself.