Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Java Deep Learning Cookbook

You're reading from   Java Deep Learning Cookbook Train neural networks for classification, NLP, and reinforcement learning using Deeplearning4j

Arrow left icon
Product type Paperback
Published in Nov 2019
Publisher Packt
ISBN-13 9781788995207
Length 304 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Rahul Raj Rahul Raj
Author Profile Icon Rahul Raj
Rahul Raj
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Introduction to Deep Learning in Java 2. Data Extraction, Transformation, and Loading FREE CHAPTER 3. Building Deep Neural Networks for Binary Classification 4. Building Convolutional Neural Networks 5. Implementing Natural Language Processing 6. Constructing an LSTM Network for Time Series 7. Constructing an LSTM Neural Network for Sequence Classification 8. Performing Anomaly Detection on Unsupervised Data 9. Using RL4J for Reinforcement Learning 10. Developing Applications in a Distributed Environment 11. Applying Transfer Learning to Network Models 12. Benchmarking and Neural Network Optimization 13. Other Books You May Enjoy

Configuring Maven for DL4J

We need to add DL4J/ND4J Maven dependencies to leverage DL4J capabilities. ND4J is a scientific computation library dedicated to DL4J. It is necessary to mention the ND4J backend dependency in your pom.xml file. In this recipe, we will add a CPU-specific Maven configuration in pom.xml.

Getting ready

Let's discuss the required Maven dependencies. We assume you have already done the following:

  • JDK 1.7, or higher, is installed and the PATH variable is set.
  • Maven is installed and the PATH variable is set.
A 64-bit JVM is required to run DL4J.

Set the PATH variable for JDK and Maven:

  • On Linux: Use the export command to add Maven and JDK to the PATH variable:
export PATH=/opt/apache-maven-3.x.x/bin:$PATH
export PATH=${PATH}:/usr/java/jdk1.x.x/bin

Replace the version number as per the installation.

  • On Windows: Set System Environment variables from system Properties:
set PATH="C:/Program Files/Apache Software Foundation/apache-maven-3.x.x/bin:%PATH%"
set PATH="C:/Program Files/Java/jdk1.x.x/bin:%PATH%"

Replace the JDK version number as per the installation.

How to do it...

  1. Add the DL4J core dependency:
<dependency>
<groupId>org.deeplearning4j</groupId>
<artifactId>deeplearning4j-core</artifactId>
<version>1.0.0-beta3</version>
</dependency>
  1. Add the ND4J native dependency:
<dependency>
<groupId>org.nd4j</groupId>
<artifactId>nd4j-native-platform</artifactId>
<version>1.0.0-beta3</version>
</dependency>

  1. Add the DataVec dependency to perform ETL (short for Extract, Transform and Load) operations:
<dependency>
<groupId>org.datavec</groupId>
<artifactId>datavec-api</artifactId>
<version>1.0.0-beta3</version>
</dependency>
  1. Enable logging for debugging:
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-simple</artifactId>
<version>1.7.25</version> //change to latest version
</dependency>
Note that 1.0.0-beta 3 is the current DL4J release version at the time of writing this book, and is the official version used in this cookbook. Also, note that DL4J relies on an ND4J backend for hardware-specific implementations.

How it works...

After adding DL4J core dependency and ND4J dependencies, as mentioned in step 1 and step 2, we are able to create neural networks. In step 2, the ND4J maven configuration is mentioned as a necessary backend dependency for Deeplearnign4j. ND4J is the scientific computation library for Deeplearning4j.


ND4J is a scientific computing library written for Java, just like NumPy is for Python.

Step 3 is very crucial for the ETL process: that is, data extraction, transformation, and loading. So, we definitely need this as well in order to train the neural network using data.

Step 4 is optional but recommended, since logging will reducee the effort involved in debugging.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image