Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
IoT Edge Computing with MicroK8s

You're reading from   IoT Edge Computing with MicroK8s A hands-on approach to building, deploying, and distributing production-ready Kubernetes on IoT and Edge platforms

Arrow left icon
Product type Paperback
Published in Sep 2022
Publisher Packt
ISBN-13 9781803230634
Length 416 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Karthikeyan Shanmugam Karthikeyan Shanmugam
Author Profile Icon Karthikeyan Shanmugam
Karthikeyan Shanmugam
Arrow right icon
View More author details
Toc

Table of Contents (24) Chapters Close

Preface 1. Part 1: Foundations of Kubernetes and MicroK8s
2. Chapter 1: Getting Started with Kubernetes FREE CHAPTER 3. Chapter 2: Introducing MicroK8s 4. Part 2: Kubernetes as the Preferred Platform for IoT and Edge Computing
5. Chapter 3: Essentials of IoT and Edge Computing 6. Chapter 4: Handling the Kubernetes Platform for IoT and Edge Computing 7. Part 3: Running Applications on MicroK8s
8. Chapter 5: Creating and Implementing Updates on a Multi-Node Raspberry Pi Kubernetes Clusters 9. Chapter 6: Configuring Connectivity for Containers 10. Chapter 7: Setting Up MetalLB and Ingress for Load Balancing 11. Chapter 8: Monitoring the Health of Infrastructure and Applications 12. Chapter 9: Using Kubeflow to Run AI/MLOps Workloads 13. Chapter 10: Going Serverless with Knative and OpenFaaS Frameworks 14. Part 4: Deploying and Managing Applications on MicroK8s
15. Chapter 11: Managing Storage Replication with OpenEBS 16. Chapter 12: Implementing Service Mesh for Cross-Cutting Concerns 17. Chapter 13: Resisting Component Failure Using HA Clusters 18. Chapter 14: Hardware Virtualization for Securing Containers 19. Chapter 15: Implementing Strict Confinement for Isolated Containers 20. Chapter 16: Diving into the Future 21. Frequently Asked Questions About MicroK8s
22. Index 23. Other Books You May Enjoy

Understanding services

In Kubernetes, a service is an abstraction that defines a logical set of pods, as well as a policy for accessing them. An example service definition is shown in the following code block, which includes a collection of pods that each listen on TCP port 9876 with the app=exampleApp label:

apiVersion: v1
kind: Service
metadata:
  name: example-service
spec:
  selector:
    app: exampleApp
  ports:
    - protocol: TCP
      port: 80
      targetPort: 9876

In the preceding example, a new Service object named example-service was created that routes TCP port 9876 to any pod with the app=exampleApp label. This service is given an IP address by Kubernetes, which is utilized by the service proxies. A Kubernetes service, in simple terms, connects a group of pods to an abstracted service name and IP address. Discovery and routing between pods are provided by services. Services, for example, connect an application's frontend to its backend, which are both deployed in different cluster deployments. Labels and selectors are used by services to match pods with other applications.

The core attributes of a Kubernetes service are as follows:

  • A label selector that locates pods
  • The cluster IP address and the assigned port number
  • Port definitions
  • (Optional) Mapping for incoming ports to a targetPort

Kubernetes will automatically assign a cluster IP address, which will be used to route traffic by service proxies. The selector's controller will check for pods that match the defined label. Some applications will require multiple ports to be exposed via the service. Kubernetes facilitates this by using multi-port services, where a user can define multiple ports in a single service object.

In the following example, we have exposed ports 80 and 443 to target ports 8080 and 8090 to route HTTP and HTTPS traffic to any underlying pods using the app=webserver-nginx-multiport-example selector:

apiVersion: v1
kind: Service
metadata:
  name: nginx-service
spec:
  selector:
    app: webserver-nginx-multiport-example
  ports:
    - name: http
      protocol: TCP
      port: 80
      targetPort: 8080
    - name: https
      protocol: TCP
      port: 443
      targetPort: 8090

A service can also be defined without the use of a selector; however, you must explicitly connect the service (IP address, port, and so on) using an endpoints object. This is because, unlike with a selector, Kubernetes does not know which pods the service should be connected to, so endpoint objects are not built automatically.

Some use cases for services without selectors are as follows:

  • Connecting to another service in a different namespace or cluster
  • Communicating with external services, data migration, testing services, deployments, and so on

Let's create a deployment with three replicas of an Apache web server:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: apache-deployment
  labels:
    app: webserver
spec:
  replicas: 3
  selector:
    matchLabels:
      app: webserver
  template:
    metadata:
      labels:
        app: webserver
    spec:
      containers: 
      - name: apache
        image: httpd:latest
        ports:
        - containerPort: 80

Create the deployment using the following command:

kubectl apply -f apache-deployment.yaml

The following are the most common types of services:

  • ClusterIP: This is the default type and exposes the service via the cluster's internal IP address. These services are only accessible within the cluster. So, users need to implement port forwarding or a proxy to expose a ClusterIP to a wider ingress of traffic.
  • NodePort: A static port on each node's IP is used to expose a service. To route traffic to the NordPort service, a ClusterIP service is automatically created. Requesting NodeIP:NodePort> from the outside allows users to communicate with the service.
  • LoadBalancer: This is the preferred solution for exposing the cluster to the wider internet. The LoadBalancer type of service will create a load balancer (the load balancer's type depends on the cloud provider) and expose the service externally. It will also automatically create ClusterIP and NodePort services and route traffic accordingly.
  • ExternalName: Maps a service to a predefined externalName ex.sampleapp.test.com field by returning a value for the CNAME record.
You have been reading a chapter from
IoT Edge Computing with MicroK8s
Published in: Sep 2022
Publisher: Packt
ISBN-13: 9781803230634
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image