Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Explainable AI (XAI) with Python

You're reading from   Hands-On Explainable AI (XAI) with Python Interpret, visualize, explain, and integrate reliable AI for fair, secure, and trustworthy AI apps

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781800208131
Length 454 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Denis Rothman Denis Rothman
Author Profile Icon Denis Rothman
Denis Rothman
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Explaining Artificial Intelligence with Python 2. White Box XAI for AI Bias and Ethics FREE CHAPTER 3. Explaining Machine Learning with Facets 4. Microsoft Azure Machine Learning Model Interpretability with SHAP 5. Building an Explainable AI Solution from Scratch 6. AI Fairness with Google's What-If Tool (WIT) 7. A Python Client for Explainable AI Chatbots 8. Local Interpretable Model-Agnostic Explanations (LIME) 9. The Counterfactual Explanations Method 10. Contrastive XAI 11. Anchors XAI 12. Cognitive XAI 13. Answers to the Questions 14. Other Books You May Enjoy
15. Index

Summary

This chapter approached XAI using moral, technical, ethical, and bias perspectives.

The trolley problem transposed to SDC autopilot ML algorithms challenges automatic decision-making processes. In life and death situations, a human driver faces near-impossible decisions. Human artificial intelligence algorithm designers must find ways to make autopilots as reliable as possible.

Decision trees provide efficient solutions for SDC autopilots. We saw that a standard approach to designing and explaining decision trees provides useful information. However, it isn't enough to understand the decision trees in depth.

XAI encourages us to go further and analyze the structure of decision trees. We explored the many options to explain how decision trees work. We were able to analyze the decision-making process of a decision tree level by level. We then displayed the graph of the decision tree step by step.

Still, that was insufficient in finding a way to minimize the deaths that can happen in situations where killing a pedestrian or the passengers of an SDC cannot be avoided. We introduced some basic rules to simulate AI bias and ethics.

Finally, we introduced alerts that the SDC's autopilot manuals recommend, minimizing encounters with life and death situations.

In this chapter, we traveled the tough journey from technical certainty to healthy moral doubt. We provided AI autopilots with the machine emotional maturity that can save lives by implementing the "fear" of accidents in our SDC autopilots.

In this chapter, we got our hands dirty by developing XAI decision trees. In Chapter 3, Explaining Machine Learning with Facets, we will explore Facets to drill down into datasets.

You have been reading a chapter from
Hands-On Explainable AI (XAI) with Python
Published in: Jul 2020
Publisher: Packt
ISBN-13: 9781800208131
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image