Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Getting Started with Google BERT

You're reading from   Getting Started with Google BERT Build and train state-of-the-art natural language processing models using BERT

Arrow left icon
Product type Paperback
Published in Jan 2021
Publisher Packt
ISBN-13 9781838821593
Length 352 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Sudharsan Ravichandiran Sudharsan Ravichandiran
Author Profile Icon Sudharsan Ravichandiran
Sudharsan Ravichandiran
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1 - Starting Off with BERT
2. A Primer on Transformers FREE CHAPTER 3. Understanding the BERT Model 4. Getting Hands-On with BERT 5. Section 2 - Exploring BERT Variants
6. BERT Variants I - ALBERT, RoBERTa, ELECTRA, and SpanBERT 7. BERT Variants II - Based on Knowledge Distillation 8. Section 3 - Applications of BERT
9. Exploring BERTSUM for Text Summarization 10. Applying BERT to Other Languages 11. Exploring Sentence and Domain-Specific BERT 12. Working with VideoBERT, BART, and More 13. Assessments 14. Other Books You May Enjoy

Robustly Optimized BERT pre-training Approach

RoBERTa is another interesting and popular variant of BERT. Researchers observed that BERT is severely undertrained and proposed several approaches to pre-train the BERT model. RoBERTa is essentially BERT with the following changes in pre-training:

  • Use dynamic masking instead of static masking in the MLM task.
  • Remove the NSP task and train using only the MLM task.
  • Train with a large batch size.
  • Use byte-level BPE (BBPE) as a tokenizer.

Now, let's look into the details and discuss each of the preceding points.

Using dynamic masking instead of static masking

We learned that we pre-train BERT using the MLM and NSP tasks. In the MLM task, we randomly mask 15% of the tokens and let the network predict the masked token.

For instance, say we have the sentence We arrived at the airport in time. Now, after tokenizing and adding [CLS] and [SEP] tokens, we have the following:

tokens = [ [CLS], we, arrived, at, the, airport, in, time, [SEP...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image