Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
F# for Machine Learning Essentials

You're reading from   F# for Machine Learning Essentials Get up and running with machine learning with F# in a fun and functional way

Arrow left icon
Product type Paperback
Published in Feb 2016
Publisher
ISBN-13 9781783989348
Length 194 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Sudipta Mukherjee Sudipta Mukherjee
Author Profile Icon Sudipta Mukherjee
Sudipta Mukherjee
Arrow right icon
View More author details
Toc

Table of Contents (9) Chapters Close

Preface 1. Introduction to Machine Learning FREE CHAPTER 2. Linear Regression 3. Classification Techniques 4. Information Retrieval 5. Collaborative Filtering 6. Sentiment Analysis 7. Anomaly Detection Index

Linear regression method of least square


Let's say you have a list of data point pairs such as the following:

You want to find out if there are any linear relationships between and .

In the simplest possible model of linear regression, there exists a simple linear relationship between the independent variable (also known as the predictor variable) and the dependent variable (also known as the predicted or the target variable). The independent variable is most often represented by the symbol and the target variable is represented by the symbol . In the simplest form of linear regression, with only one predictor variable, the predicted value of Y is calculated by the following formula:

is the predicted variable for . Error for a single data point is represented by:

and are the regression parameters that can be calculated with the following formula.

The best linear model minimizes the sum of squared errors. This is known as Sum of Squared Error (SSE).

For the best model, the regression...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image