Previous work
Self-supervised learning is not a new concept. However, the term became popular with the advent of transformer-based models such as BERT and GPT-2, which were trained in a semi-supervised manner on large quantities of unlabeled text. In the past, self-supervised learning was often labeled as unsupervised learning. However, there were many earlier models that attempted to leverage regularities in the input data to produce results comparable to that using supervised learning. You have encountered some of them in previous chapters already, but we will briefly cover them again in this section.
The Restricted Boltzmann Machine (RBM) is a generative neural model that can learn a probability distribution over its inputs. It was invented in 1986 and subsequently improved in the mid-2000s. It can be trained in either supervised or unsupervised mode and can be applied to many downstream tasks, such as dimensionality reduction, classification, etc.
Autoencoders (AEs) are...