Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning with TensorFlow

You're reading from   Deep Learning with TensorFlow Explore neural networks and build intelligent systems with Python

Arrow left icon
Product type Paperback
Published in Mar 2018
Publisher Packt
ISBN-13 9781788831109
Length 484 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Giancarlo Zaccone Giancarlo Zaccone
Author Profile Icon Giancarlo Zaccone
Giancarlo Zaccone
Md. Rezaul Karim Md. Rezaul Karim
Author Profile Icon Md. Rezaul Karim
Md. Rezaul Karim
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with Deep Learning FREE CHAPTER 2. A First Look at TensorFlow 3. Feed-Forward Neural Networks with TensorFlow 4. Convolutional Neural Networks 5. Optimizing TensorFlow Autoencoders 6. Recurrent Neural Networks 7. Heterogeneous and Distributed Computing 8. Advanced TensorFlow Programming 9. Recommendation Systems Using Factorization Machines 10. Reinforcement Learning Other Books You May Enjoy Index

TensorFlow code structure

The TensorFlow programming model signifies how to structure your predictive models. A TensorFlow program is generally divided into four phases when you have imported the TensorFlow library:

  • Construction of the computational graph that involves some operations on tensors (we will see what a tensor is soon)
  • Creation of a session
  • Running a session; performed for the operations defined in the graph
  • Computation for data collection and analysis

These main phases define the programming model in TensorFlow. Consider the following example, in which we want to multiply two numbers:

import tensorflow as tf # Import TensorFlow

x = tf.constant(8) # X op
y = tf.constant(9) # Y op
z = tf.multiply(x, y) # New op Z

sess = tf.Session() # Create TensorFlow session

out_z = sess.run(z) # execute Z op
sess.close() # Close TensorFlow session
print('The multiplication of x and y: %d' % out_z)# print result

The preceding code segment can be represented by the following figure:

TensorFlow code structure

Figure...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image