Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Deep Learning with Hadoop
Deep Learning with Hadoop

Deep Learning with Hadoop: Distributed Deep Learning with Large-Scale Data

eBook
€8.99 €26.99
Paperback
€32.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Table of content icon View table of contents Preview book icon Preview Book

Deep Learning with Hadoop

Chapter 1. Introduction to Deep Learning

 

"By far the greatest danger of Artificial Intelligence is that people conclude too early that they understand it."

 
 --Eliezer Yudkowsky

Ever thought, why it is often difficult to beat the computer in chess, even for the best players of the game? How Facebook is able to recognize your face amid hundreds of millions of photos? How can your mobile phone recognize your voice, and redirect the call to the correct person, from hundreds of contacts listed?

The primary goal of this book is to deal with many of those queries, and to provide detailed solutions to the readers. This book can be used for a wide range of reasons by a variety of readers, however, we wrote the book with two main target audiences in mind. One of the primary target audiences is undergraduate or graduate university students learning about deep learning and Artificial Intelligence; the second group of readers are the software engineers who already have a knowledge of big data, deep learning, and statistical modeling, but want to rapidly gain knowledge of how deep learning can be used for big data and vice versa.

This chapter will mainly try to set a foundation for the readers by providing the basic concepts, terminologies, characteristics, and the major challenges of deep learning. The chapter will also put forward the classification of different deep network algorithms, which have been widely used by researchers over the last decade. The following are the main topics that this chapter will cover:

  • Getting started with deep learning
  • Deep learning terminologies
  • Deep learning: A revolution in Artificial Intelligence
  • Classification of deep learning networks

Ever since the dawn of civilization, people have always dreamt of building artificial machines or robots which can behave and work exactly like human beings. From the Greek mythological characters to the ancient Hindu epics, there are numerous such examples, which clearly suggest people's interest and inclination towards creating and having an artificial life.

During the initial computer generations, people had always wondered if the computer could ever become as intelligent as a human being! Going forward, even in medical science, the need of automated machines has become indispensable and almost unavoidable. With this need and constant research in the same field, Artificial Intelligence (AI) has turned out to be a flourishing technology with various applications in several domains, such as image processing, video processing, and many other diagnosis tools in medical science too.

Although there are many problems that are resolved by AI systems on a daily basis, nobody knows the specific rules for how an AI system is programmed! A few of the intuitive problems are as follows:

  • Google search, which does a really good job of understanding what you type or speak
  • As mentioned earlier, Facebook is also somewhat good at recognizing your face, and hence, understanding your interests

Moreover, with the integration of various other fields, for example, probability, linear algebra, statistics, machine learning, deep learning, and so on, AI has already gained a huge amount of popularity in the research field over the course of time.

One of the key reasons for the early success of AI could be that it basically dealt with fundamental problems for which the computer did not require a vast amount of knowledge. For example, in 1997, IBM's Deep Blue chess-playing system was able to defeat the world champion Garry Kasparov [1]. Although this kind of achievement at that time can be considered significant, it was definitely not a burdensome task to train the computer with only the limited number of rules involved in chess! Training a system with a fixed and limited number of rules is termed as hard-coded knowledge of the computer. Many Artificial Intelligence projects have undergone this hard-coded knowledge about the various aspects of the world in many traditional languages. As time progresses, this hard-coded knowledge does not seem to work with systems dealing with huge amounts of data. Moreover, the number of rules that the data was following also kept changing in a frequent manner. Therefore, most of the projects following that system failed to stand up to the height of expectation.

The setbacks faced by this hard-coded knowledge implied that those artificial intelligence systems needed some way of generalizing patterns and rules from the supplied raw data, without the need for external spoon-feeding. The proficiency of a system to do so is termed as machine learning. There are various successful machine learning implementations which we use in our daily life. A few of the most common and important implementations are as follows:

  • Spam detection: Given an e-mail in your inbox, the model can detect whether to put that e-mail in spam or in the inbox folder. A common naive Bayes model can distinguish between such e-mails.
  • Credit card fraud detection: A model that can detect whether a number of transactions performed at a specific time interval are carried out by the original customer or not.
  • One of the most popular machine learning models, given by Mor-Yosef et al in 1990, used logistic regression, which could recommend whether caesarean delivery was needed for the patient or not!

There are many such models which have been implemented with the help of machine learning techniques.

Introduction to Deep Learning

Figure 1.1: The figure shows the example of different types of representation. Let's say we want to train the machine to detect some empty spaces in between the jelly beans. In the image on the right side, we have sparse jelly beans, and it would be easier for the AI system to determine the empty parts. However, in the image on the left side, we have extremely compact jelly beans, and hence, it will be an extremely difficult task for the machine to find the empty spaces. Images sourced from USC-SIPI image database

A large portion of performance of the machine learning systems depends on the data fed to the system. This is called representation of the data. All the information related to the representation is called the feature of the data. For example, if logistic regression is used to detect a brain tumor in a patient, the AI system will not try to diagnose the patient directly! Rather, the concerned doctor will provide the necessary input to the systems according to the common symptoms of that patient. The AI system will then match those inputs with the already received past inputs which were used to train the system.

Based on the predictive analysis of the system, it will provide its decision regarding the disease. Although logistic regression can learn and decide based on the features given, it cannot influence or modify the way features are defined. Logistic regression is a type of regression model where the dependent variable has a limited number of possible values based on the independent variable, unlike linear regression. So, for example, if that model was provided with a caesarean patient's report instead of the brain tumor patient's report, it would surely fail to predict the correct outcome, as the given features would never match with the trained data.

These dependencies of the machine learning systems on the representation of the data are not really unknown to us! In fact, most of our computer theory performs better based on how the data are represented. For example, the quality of a database is considered based on how the schema is designed. The execution of any database query, even on a thousand or a million lines of data, becomes extremely fast if the table is indexed properly. Therefore, the dependency of the data representation of the AI systems should not surprise us.

There are many such examples in daily life too, where the representation of the data decides our efficiency. To locate a person amidst 20 people is obviously easier than to locate the same person in a crowd of 500 people. A visual representation of two different types of data representation is shown in the preceding Figure 1.1.

Therefore, if the AI systems are fed with the appropriate featured data, even the hardest problems could be resolved. However, collecting and feeding the desired data in the correct way to the system has been a serious impediment for the computer programmer.

There can be numerous real-time scenarios where extracting the features could be a cumbersome task. Therefore, the way the data are represented decides the prime factors in the intelligence of the system.

Note

Finding cats amidst a group of humans and cats can be extremely complicated if the features are not appropriate. We know that cats have tails; therefore, we might like to detect the presence of tails as a prominent feature. However, given the different tail shapes and sizes, it is often difficult to describe exactly how a tail will look like in terms of pixel values! Moreover, tails could sometimes be confused with the hands of humans. Also, overlapping of some objects could omit the presence of a cat's tail, making the image even more complicated.

From all the above discussions, it can be concluded that the success of AI systems depends mainly on how the data are represented. Also, various representations can ensnare and cache the different explanatory factors of all the disparities behind the data.

Representation learning is one of the most popular and widely practiced learning approaches used to cope with these specific problems. Learning the representations of the next layer from the existing representation of data can be defined as representation learning. Ideally, all representation learning algorithms have this advantage of learning representations, which capture the underlying factors, a subset that might be applicable for each particular sub-task. A simple illustration is given in the following Figure 1.2:

Introduction to Deep Learning

Figure 1.2: The figure illustrates representation learning. The middle layers are able to discover the explanatory factors (hidden layers, in blue rectangular boxes). Some of the factors explain each task's target, whereas some explain the inputs

However, dealing with extracting some high-level data and features from a massive amount of raw data, which requires some sort of human-level understanding, has shown its limitations. There can be many such examples:

  • Differentiating the cry of two similar age babies.
  • Identifying the image of a cat's eye at both day and night time. This becomes clumsy, because a cat's eyes glow at night unlike during the daytime.

In all these preceding edge cases, representation learning does not appear to behave exceptionally, and shows deterrent behavior.

Deep learning, a sub-field of machine learning, can rectify this major problem of representation learning by building multiple levels of representations or learning a hierarchy of features from a series of other simple representations and features [2] [8].

Introduction to Deep Learning

Figure 1.3: The figure shows how a deep learning system can represent the human image by identifying various combinations such as corners and contours, which can be defined in terms of edges. Image reprinted with permission from Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning, published by The MIT Press

The preceding Figure 1.3 shows an illustration of a deep learning model. It is generally a cumbersome task for the computer to decode the meaning of raw unstructured input data, as represented by this image, as a collection of different pixel values. A mapping function, which will convert the group of pixels to identify the image, is ideally difficult to achieve. Also, to directly train the computer for these kinds of mapping is almost insuperable. For these types of tasks, deep learning resolves the difficulty by creating a series of subsets of mappings to reach the desired output. Each subset of mappings corresponds to a different set of layer of the model. The input contains the variables that one can observe, and hence , are represented in the visible layers. From the given input we can incrementally extract the abstract features of the data. As these values are not available or visible in the given data, these layers are termed as hidden layers.

In the image, from the first layer of data, the edges can easily be identified just by a comparative study of the neighboring pixels. The second hidden layer can distinguish the corners and contours from the first hidden layer's description of the edges. From this second hidden layer, which describes the corners and contours, the third hidden layer can identify the different parts of the specific objects. Ultimately, the different objects present in the image can be distinctly detected from the third layer.

Deep learning started its journey exclusively in 2006, Hinton et al. in 2006[2]; also Bengio et al. in 2007[3] initially focused on the MNIST digit classification problem. In the last few years, deep learning has seen major transitions from digits to object recognition in natural images. Apart from this, one of the major breakthroughs was achieved by Krizhevsky et al. in 2012 [4] using the ImageNet dataset.

The scope of this book is mainly limited to deep learning, so before diving into it directly, the necessary definitions of deep learning should be discussed.

Many researchers have defined deep learning in many ways, and hence, in the last 10 years, it has gone through many definitions too! The following are few of the widely accepted definitions:

  • As noted by GitHub, deep learning is a new area of machine learning research, which has been introduced with the objective of moving machine learning closer to one of its original goals: Artificial Intelligence. Deep learning is about learning multiple levels of representation and abstraction, which help to make sense of data such as images, sounds, and texts.
  • As recently updated by Wikipedia, deep learning is a branch of machine learning based on a set of algorithms that attempt to model high-level abstractions in the data by using a deep graph with multiple processing layers, composed of multiple linear and non-linear transformations.

As the definitions suggest, deep learning can also be considered as a special type of machine learning. Deep learning has achieved immense popularity in the field of data science with its ability to learn complex representation from various simple features. To have an in-depth grip on deep learning, we have listed out a few terminologies which will be frequently used in the upcoming chapters. The next topic of this chapter will help you to lay a foundation for deep learning by providing various terminologies and important networks used for deep learning.

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Get to grips with the deep learning concepts and set up Hadoop to put them to use
  • Implement and parallelize deep learning models on Hadoop’s YARN framework
  • A comprehensive tutorial to distributed deep learning with Hadoop

Description

This book will teach you how to deploy large-scale dataset in deep neural networks with Hadoop for optimal performance. Starting with understanding what deep learning is, and what the various models associated with deep neural networks are, this book will then show you how to set up the Hadoop environment for deep learning. In this book, you will also learn how to overcome the challenges that you face while implementing distributed deep learning with large-scale unstructured datasets. The book will also show you how you can implement and parallelize the widely used deep learning models such as Deep Belief Networks, Convolutional Neural Networks, Recurrent Neural Networks, Restricted Boltzmann machines and autoencoder using the popular deep learning library Deeplearning4j. Get in-depth mathematical explanations and visual representations to help you understand the design and implementations of Recurrent Neural network and Denoising Autoencoders with Deeplearning4j. To give you a more practical perspective, the book will also teach you the implementation of large-scale video processing, image processing and natural language processing on Hadoop. By the end of this book, you will know how to deploy various deep neural networks in distributed systems using Hadoop.

Who is this book for?

If you are a data scientist who wants to learn how to perform deep learning on Hadoop, this is the book for you. Knowledge of the basic machine learning concepts and some understanding of Hadoop is required to make the best use of this book.

What you will learn

  • Explore Deep Learning and various models associated with it
  • Understand the challenges of implementing distributed deep learning with Hadoop and how to overcome it
  • Implement Convolutional Neural Network (CNN) with Deeplearning4j
  • Delve into the implementation of Restricted Boltzmann machines (RBMs)
  • Understand the mathematical explanation for implementing Recurrent Neural Networks (RNNs)
  • Understand the design and implementation of Deep Belief Networks (DBN) and Deep Autoencoders using Deeplearning4j
  • Get hands on practice of deep learning and their implementation with Hadoop.
Estimated delivery fee Deliver to Italy

Premium delivery 7 - 10 business days

€17.95
(Includes tracking information)

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Feb 20, 2017
Length: 206 pages
Edition : 1st
Language : English
ISBN-13 : 9781787124769
Vendor :
Apache
Category :
Languages :
Concepts :

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Estimated delivery fee Deliver to Italy

Premium delivery 7 - 10 business days

€17.95
(Includes tracking information)

Product Details

Publication date : Feb 20, 2017
Length: 206 pages
Edition : 1st
Language : English
ISBN-13 : 9781787124769
Vendor :
Apache
Category :
Languages :
Concepts :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 116.97
Deep Learning with Hadoop
€32.99
Deep Learning with TensorFlow
€41.99
Artificial Intelligence with Python
€41.99
Total 116.97 Stars icon
Banner background image

Table of Contents

8 Chapters
1. Introduction to Deep Learning Chevron down icon Chevron up icon
2. Distributed Deep Learning for Large-Scale Data Chevron down icon Chevron up icon
3. Convolutional Neural Network Chevron down icon Chevron up icon
4. Recurrent Neural Network Chevron down icon Chevron up icon
5. Restricted Boltzmann Machines Chevron down icon Chevron up icon
6. Autoencoders Chevron down icon Chevron up icon
7. Miscellaneous Deep Learning Operations using Hadoop Chevron down icon Chevron up icon
1. References Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.8
(5 Ratings)
5 star 80%
4 star 20%
3 star 0%
2 star 0%
1 star 0%
Oleg Okun Nov 05, 2018
Full star icon Full star icon Full star icon Full star icon Full star icon 5
If you are looking for a book to learn deeplearning4j - A Java based Distributed Deep Learning framework - this is the book to read. It contains a lot of useful code to immediately start working with, which implements the main Deep Learning models in deeplearning4j: Convolutional Neural Networks, Recurrent Neural Networks, Restricted Bolzman Machines, and Autoencoders. For beginners to Deep Learning, the author explains a network architecture for each model, its strong and weak points, details of fine-tuning to pay attention to. The last chapter sketches the design of real-world applications of the models described in the previous chapters, such as distributed video decoding and intelligent web browsing.
Amazon Verified review Amazon
JAYASMITA DEB Mar 14, 2017
Full star icon Full star icon Full star icon Full star icon Full star icon 5
A great book to know about distributed deep learning and is explained in a appropriate manner.
Amazon Verified review Amazon
Amazon Customer Mar 14, 2017
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I was looking for a good use case of Xanadu, a big data platform technology that I'm now commercializing, in Machine Learning.Distributed deep learning exploiting large-scale datasets that is explained in this book in detail will be one of best use cases of Xanadu,which can show Xanadu's excellent functionality in deep learning applications. This book is an excellent reference to anyone who wants toexplore the distributed deep learning for big data applications.
Amazon Verified review Amazon
shreya dey Jul 23, 2017
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Liked the book. Must read... Useful. Information overloaded!
Amazon Verified review Amazon
Amazon Customer Jan 30, 2018
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
Simple and easy to understand....With useful information
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact customercare@packt.com with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at customercare@packt.com using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on customercare@packt.com with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on customercare@packt.com within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on customercare@packt.com who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on customercare@packt.com within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela