Use LangChain to orchestrate LLMs and their components within applications
Grasp basic and advanced techniques of prompt engineering
Description
Building LLM Powered Applications delves into the fundamental concepts, cutting-edge technologies, and practical applications that LLMs offer, ultimately paving the way for the emergence of large foundation models (LFMs) that extend the boundaries of AI capabilities.
The book begins with an in-depth introduction to LLMs. We then explore various mainstream architectural frameworks, including both proprietary models (GPT 3.5/4) and open-source models (Falcon LLM), and analyze their unique strengths and differences. Moving ahead, with a focus on the Python-based, lightweight framework called LangChain, we guide you through the process of creating intelligent agents capable of retrieving information from unstructured data and engaging with structured data using LLMs and powerful toolkits. Furthermore, the book ventures into the realm of LFMs, which transcend language modeling to encompass various AI tasks and modalities, such as vision and audio.
Whether you are a seasoned AI expert or a newcomer to the field, this book is your roadmap to unlock the full potential of LLMs and forge a new era of intelligent machines.
Who is this book for?
Software engineers and data scientists who want hands-on guidance for applying LLMs to build applications. The book will also appeal to technical leaders, students, and researchers interested in applied LLM topics.
We don’t assume previous experience with LLM specifically. But readers should have core ML/software engineering fundamentals to understand and apply the content.
What you will learn
Explore the core components of LLM architecture, including encoder-decoder blocks and embeddings
Understand the unique features of LLMs like GPT-3.5/4, Llama 2, and Falcon LLM
Use AI orchestrators like LangChain, with Streamlit for the frontend
Get familiar with LLM components such as memory, prompts, and tools
Learn how to use non-parametric knowledge and vector databases
Understand the implications of LFMs for AI research and industry applications
Customize your LLMs with fine tuning
Learn about the ethical implications of LLM-powered applications
Excellent introduction to engineering LLM-based applications. Bummer that the code examples won't work with current langchain versions. Then again, fiddeling around with that framework is just another learning opportunity.
Subscriber review
Javier SoquesJul 04, 2024
5
Good learning resource for understanding LLMs
Feefo Verified review
dr tJun 01, 2024
5
As an advocate of LLMs, this looked like a book that I should read.The book is well-written, well-structured, and easy to read. In 13 chapters, it takes readers through fundamental concepts (e.g. transformers, backprop, embeddings), to practical applications (e.g. building a chatbot, search engines) and considerations (e.g. choosing an LLM, prompt engineering), ethical and responsible considerations, and also looks at the latest advancements in the field of gen AI.This reader found the chapter on Search and Recommendation Engines with LLMs most compelling. The chapter explores how large language models can improve recommendation systems through the use of embeddings and generative models, the reader also learns how to build their own recommendation system application, utilising state-of-the-art LLMs with LangChain as the framework. Fascinating stuff!In summary, if you work with LLMs this is a useful book that contains lot of useful knowledge and practical examples. Recommended.
Amazon Verified review
SakshamMay 25, 2024
5
One of the standout features of this book is its emphasis on real-world applications. The author shares numerous case studies and practical examples that highlight how LLMs can be used to create intelligent applications across various domains, from customer service chatbots to advanced content generation tools. These examples are not just technically informative but also thoughtfully chosen to demonstrate the potential for LLMs to enhance human productivity and creativity.
Valentina Alto is a Data Science Graduate who joined Microsoft Italy in 2020 as an Azure solution specialist. Since 2022, she has been focusing on data and AI workloads within the manufacturing and pharmaceutical industries. She has been working closely with system integrators on customer projects to deploy cloud architecture with a focus on Modern Data Platforms and AI-powered applications.
In June 2024, she moved to Microsoft Dubai as an AI App Tech Architect to focus more on AI-driven projects in the Middle East.
Since commencing her academic journey, she has been writing tech articles on statistics, machine learning, deep learning, and AI in various publications. She has authored several books on machine learning and large language models.
A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content
How can I cancel my subscription?
To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.
What are credits?
Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.
What happens if an Early Access Course is cancelled?
Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.
Where can I send feedback about an Early Access title?
If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team.
Can I download the code files for Early Access titles?
We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.
When we publish the book, the code files will also be available to download from the Packt website.
How accurate is the publication date?
The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.
How will I know when new chapters are ready?
We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.
I am a Packt subscriber, do I get Early Access?
Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.
How is Early Access delivered?
Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.
How do I buy Early Access content?
Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.
What is Early Access?
Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.