Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
3D Graphics Rendering Cookbook

You're reading from   3D Graphics Rendering Cookbook A comprehensive guide to exploring rendering algorithms in modern OpenGL and Vulkan

Arrow left icon
Product type Paperback
Published in Aug 2021
Publisher Packt
ISBN-13 9781838986193
Length 670 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Viktor Latypov Viktor Latypov
Author Profile Icon Viktor Latypov
Viktor Latypov
Sergey Kosarevsky Sergey Kosarevsky
Author Profile Icon Sergey Kosarevsky
Sergey Kosarevsky
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Chapter 1: Establishing a Build Environment 2. Chapter 2: Using Essential Libraries FREE CHAPTER 3. Chapter 3: Getting Started with OpenGL and Vulkan 4. Chapter 4: Adding User Interaction and Productivity Tools 5. Chapter 5: Working with Geometry Data 6. Chapter 6: Physically Based Rendering Using the glTF2 Shading Model 7. Chapter 7: Graphics Rendering Pipeline 8. Chapter 8: Image-Based Techniques 9. Chapter 9: Working with Scene Graphs 10. Chapter 10: Advanced Rendering Techniques and Optimizations 11. Other Books You May Enjoy

Implementing computed meshes in Vulkan

In the Initializing compute shaders in Vulkan recipe, we learned how to initialize the compute pipeline in Vulkan. We are going to need it in this chapter to implement a BRDF precomputation tool for our PBR pipeline. But before that, let's learn a few simple and interesting ways to use compute shaders in Vulkan and combine this feature with mesh geometry generation on the GPU.

We are going to run a compute shader to create triangulated geometry of a three-dimensional (3D) torus knot shape with different P and Q parameters.

Important note

A torus knot is a special kind of knot that lies on the surface of an unknotted torus in 3D space. Each torus knot is specified by a pair of p and q coprime integers. You can read more on this at https://en.wikipedia.org/wiki/Torus_knot.

The data produced by the compute shader is stored in a shader storage buffer and used in a vertex shader in a typical programmable-vertex-fetch way. To make the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime