Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Machine Learning Solutions Architect Handbook

You're reading from   The Machine Learning Solutions Architect Handbook Practical strategies and best practices on the ML lifecycle, system design, MLOps, and generative AI

Arrow left icon
Product type Paperback
Published in Apr 2024
Publisher Packt
ISBN-13 9781805122500
Length 602 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
David Ping David Ping
Author Profile Icon David Ping
David Ping
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Navigating the ML Lifecycle with ML Solutions Architecture FREE CHAPTER 2. Exploring ML Business Use Cases 3. Exploring ML Algorithms 4. Data Management for ML 5. Exploring Open-Source ML Libraries 6. Kubernetes Container Orchestration Infrastructure Management 7. Open-Source ML Platforms 8. Building a Data Science Environment Using AWS ML Services 9. Designing an Enterprise ML Architecture with AWS ML Services 10. Advanced ML Engineering 11. Building ML Solutions with AWS AI Services 12. AI Risk Management 13. Bias, Explainability, Privacy, and Adversarial Attacks 14. Charting the Course of Your ML Journey 15. Navigating the Generative AI Project Lifecycle 16. Designing Generative AI Platforms and Solutions 17. Other Books You May Enjoy
18. Index

To get the most out of this book

If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

For the hardware/software requirements for the book, all you will need is a Windows or Mac machine, and an AWS account.

Download the example code files

You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-and-Risk-Management-Handbook-Second-Edition/. If there’s an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots and diagrams used in this book. You can download it here: https://packt.link/gbp/9781805122500.

Conventions used

There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Mount the downloaded WebStorm-10*.dmg disk image file as another disk in your system.”

A block of code is set as follows:

import pandas as pd
churn_data = pd.read_csv("churn.csv")
churn_data.head()

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

# The following command calculates the various statistics
for the features.
churn_data.describe()
# The following command displays the histograms for the
different features.
# You can replace the column names to plot the histograms
for other features
churn_data.hist(['CreditScore', 'Age', 'Balance'])
# The following command calculate the correlations among
features
churn_data.corr()

Any command-line input or output is written as follows:

! pip3 install --upgrade tensorflow

Bold: Indicates a new term, an important word, or words that you see on screen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “An example of a deep learning-based solution is the Amazon Echo virtual assistant.”

Warnings or important notes appear like this.

Tips and tricks appear like this.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at ₹800/month. Cancel anytime