Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
TensorFlow Reinforcement Learning Quick Start Guide

You're reading from   TensorFlow Reinforcement Learning Quick Start Guide Get up and running with training and deploying intelligent, self-learning agents using Python

Arrow left icon
Product type Paperback
Published in Mar 2019
Publisher Packt
ISBN-13 9781789533583
Length 184 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Kaushik Balakrishnan Kaushik Balakrishnan
Author Profile Icon Kaushik Balakrishnan
Kaushik Balakrishnan
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Up and Running with Reinforcement Learning 2. Temporal Difference, SARSA, and Q-Learning FREE CHAPTER 3. Deep Q-Network 4. Double DQN, Dueling Architectures, and Rainbow 5. Deep Deterministic Policy Gradient 6. Asynchronous Methods - A3C and A2C 7. Trust Region Policy Optimization and Proximal Policy Optimization 8. Deep RL Applied to Autonomous Driving 9. Assessment 10. Other Books You May Enjoy

Temporal Difference, SARSA, and Q-Learning

In the previous chapter, we looked at the basics of RL. In this chapter, we will cover temporal difference (TD) learning, SARSA, and Q-learning, which were very widely used algorithms in RL before deep RL became more common. Understanding these older-generation algorithms is essential if you want to master the field, and will also lay the foundation for delving into deep RL. We will therefore spend this chapter looking at examples using these older generation algorithms. In addition, we will also code some of these algorithms using Python. We will not be using TensorFlow for this chapter, as the problems do not involve any deep neural networks under study. However, this chapter will lay the groundwork for more advanced topics that we will cover in the subsequent chapters, and will also be our first coding experience of an RL algorithm...

You have been reading a chapter from
TensorFlow Reinforcement Learning Quick Start Guide
Published in: Mar 2019
Publisher: Packt
ISBN-13: 9781789533583
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at ₹800/month. Cancel anytime